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Abstract

Following Uber-initiated fare increases, drivers make more money per
trip and, initially, more per hour-worked. Drivers begin to work more
hours. However, this increase in hours-worked—combined with a reduc-
tion in demand from a higher fare—has a business stealing effect, with
drivers spending a smaller fraction of working hours transporting pas-
sengers. This market adjustment brings the hourly earnings rate back
to about the rate that prevailed before the fare increase, in roughly
two months. Passengers are partially compensated for higher prices by
shorter wait times, but during the period covered by our data, fare in-
creases likely reduced passenger welfare.

1 Introduction

In many platform markets, the price faced by buyers is ostensibly set by the

platform. The platform still typically allows free entry of sellers, who in turn
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the authors. The code and data to replicate this study are or will be publicly available at
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earn a fraction of receipts from the buyers they serve. With this hybrid struc-

ture, the platform’s choice of a price affects both sides of the market, but—on

the face of it—incompatible directions: A higher price lowers demand and

simultaneously increases supply, pushing the market out of equilibrium. Our

research question is a simple one—following platform price changes, how do

these markets clear? And given how they clear, what are the implications for

the functioning and efficiency of these markets?

Our empirical context is a collection of Uber-created ride-sharing market-

places in the US. These marketplaces have experienced numerous city-specific,

Uber-initiated changes to the time and distance “multipliers” that determine

the price of a trip under typical conditions. The actual price passengers faced

in the market also depends on Uber’s use of dynamic or “surge” pricing (Chen

and Sheldon, 2015; Hall et al., 2016). We abstract away from the specifics

of Uber’s taxi-like pricing of trips by constructing a price index, which is the

price for a typical trip during un-surged conditions for each city week.

We use changes in this price index to identify the effects of the fare on the

market equilibrium. As we will discuss at length, the assumptions required for

causal inference in this setting are well-satisfied, as Uber’s base fare pricing

decisions seem to be conditioned on market attributes that we observe. Fur-

thermore, we can account for other potential factors, such as local economic

conditions, weather, and even the market share of competing ride-sharing ser-

vices.

We find that when Uber raises the base fare, passengers face higher prices.

This is not mechanical, as changes in surge pricing could fully “undo” the fare

changes. However, surge does play a buffering role: with a higher base price,

demand outstrips supply less often, and so the platform does not need to use

surge pricing quite as much to clear the market. A 10% fare increase causes

the average surge rate to fall by about 2%.

On the driver side, with a higher base fare, the driver’s hourly earnings

rate rises immediately as drivers make more money per trip. However, the

hourly earnings rate begins to decline shortly thereafter. After about 8 weeks,

there is no clear difference in the driver’s gross average hourly earnings rate
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compared to before the fare increase.

The main reason for this short-run/long-run difference is that the driver

utilization—or the fraction of an hour-worked spent serving passengers—falls

substantially with a higher fare: a 10% fare increase lowers utilization by about

7%. Combined with the decline in the surge multiplier, this fall in utilization

is offsetting from the driver’s perspective with respect to the hourly earnings

rate: a 10% increase in fare raises driver hourly earnings by 0.7%, with a

95% CI that includes 0. However, consistent with hourly earnings increasing

by some amount, we do find that with a higher fare, driver hours-worked

increases, both on the extensive and intensive margins.

On the passenger side, we find that with higher prices, wait times fell

considerably. This reflects the fact that with lower utilization, all else equal,

the nearest car available for dispatch is closer. A 10% increase in the base fare

reduced wait times by about 6%. However, this quality improvement was not

enough to offset reductions in demand from higher prices: With a higher base

fare, the overall hours of transportation fell, as did the number of completed

trips.

As fare changes have real and persistent effects on the market, it is clear,

empirically, that ride-sharing markets have multiple equilibria, and that the

platform’s pricing choices are consequential. To explore the welfare implica-

tions of these movements to different equilibria, we develop a simple model

of a ride-sharing market. In the model, there is an equilibrium trade-off be-

tween passenger prices and driver utilization. Drivers generally prefer higher-

price/lower-utilization equilibria; passengers prefer the reverse. But from an

equilibrium with a sufficiently high fare, both drivers and passengers want fare

cuts; and at sufficiently low fare equilibrium, both drivers and passengers want

fare increases. However, despite the possibility of aligned interests with respect

to fare changes, our empirical results indicate fare changes were not made in

the Pareto improving range, and that fare increases made drivers better off

and passengers worse off.

The main contribution of this paper is in offering a high-level description

of how ride-sharing markets function, and the role of platform pricing in deter-
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mining the equilibrium. Although our context is ride-sharing, other markets

likely have similar economics, even if there is no centralized platform setting

prices, so long as the supply side is endogenously “busy,” there is more or less

free entry, and some market-clearing happens through non-price margins.

Our results are qualitatively similar to Hsieh and Moretti (2003), who show

that real estate agent earnings are not affected by house prices, despite agents

being paid fixed, proportional commissions (in the long run of 10 years). As in

our paper, the reasons for little pass-through of product market price to wages

are low entry barriers and business stealing.1 However, our paper highlights

the market usefulness of un-utilized time (Hall, 1983), as this time allows for

higher service quality in the form of shorter wait times. The productivity

limit in this market—100% utilized and hence fully “productive” drivers—

is actually a marketplace disaster (Castillo et al., 2017). This price/quality

trade-off has not been emphasized in the literature, but we find it is practically

important to a market-designing platform.

The re-equilibration process we illustrate is fairly straightforward. When

driving with Uber suddenly becomes a better deal, drivers work more hours and

so more drivers are chasing fewer potential trips. This lowers driver utilization

and hence the driver hourly earnings rate. The equilibrium decline in passenger

demand from higher prices is, however, offset somewhat by the improved wait

times enabled by lower utilization. The process runs in reverse when driving

with Uber becomes a temporary worse deal through fare cuts.

The re-equilibration process can be directly observed because of the computer-

mediated nature of the market. This adjustment process highlights a point

often emphasized by economists but rarely seen so clearly—namely that the

immediate and direct effect of some policy change or shock can be quite dif-

ferent from the ultimate effect following market adjustment. A fare increase

initially has the anticipated direct effects—drivers initially make more money

and passengers pay more for essentially the same service. But over time, as

1The market equilibrium that arises bears similarities to Harris and Todaro (1970) who
argue that rural-to-urban migration in developing countries tends to equalize the expected
urban income and the expected rural income, despite higher urban wages.
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drivers and passengers make different decisions in response to the new incen-

tives, a new equilibrium was reached—and that equilibrium was quite different

from what prevailed just weeks earlier.

The rest of the paper is organized as follows. We describe the empirical

context in §2. Our panel data and the variation in prices are described in §3.

We then develop a model of a ride-sharing market in §4. We then estimate

the effects of fare changes on various market outcomes in §5. The threats to

valid causal inference are discussed in §6. We conclude in §7.

2 Empirical context

Uber connects passengers with drivers-for-hire in real-time, creating a collec-

tion of city-specific, geographically-isolated markets. It currently operates in

more than 340 cities, in over 60 countries. The core rides products of Uber

are UberBlack and UberX. See Hall and Krueger (2018) for a discussion of the

relative size of the two services. We focus exclusively on UberX in this paper.

Regardless of the product, passengers use the Uber app to set their location

and request a ride. These trip requests were originally sent to the nearest

available driver.2 At the end of the trip, the fare is automatically charged to

the passenger’s credit card. Uber handles all billing, customer support, and

marketing.

2.1 The price of a trip

The price of a trip depends on a number of parameters set by Uber.3 There is a

per-minute time multiplier and per-mile distance multiplier, as well as a fixed

2Uber’s matching has since evolved away from myopic trip-by-trip matching to better
optimize for overall network efficiency; however, the quality of a ride request-available car
match remains strongly influenced by distance.

3Near the end of our panel, Uber began using “up-front” pricing in which passengers are
quoted a fare at the start of the trip, based on the expected values for the distance and
duration, given the user-provided trip start and endpoints. The identifying variation in the
base fare comes before up-front pricing was widely implemented. Furthermore, early versions
of this pricing simply replaced expected values with realized values, hence not appreciably
changing the price level.
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initial charge, and service fees in some markets. To calculate the actual fare

paid by the passenger, the parameters are multiplied by the realized time and

distance of a trip, which is then multiplied by the surge multiplier that was in

effect when the trip was taken. The surge multiplier is set algorithmically in

response to supply and demand imbalances. During “un-surged” periods, the

multiplier is 1.0.4 There is a minimum charge that applies if the calculated

fare is below that minimum.

As we will see, Uber has changed the time and distance multipliers for

UberX in every city in our data. When Uber has made a change in a given

city, it has typically changed the time and distance multipliers by the same

percentage. To avoid the complexity of tracking different fare components

separately, we construct price indices. For a given service, city, and week, the

index is the total fare for an un-surged 6-mile, 16-minute trip. This trip is

approximately the median trip time and distance for the US.

2.2 Measurement of hours-worked

We define driver hours-worked as the total time a driver spent “online” with the

Uber platform, which includes all time on-trip, en route to pick up a passenger,

or simply being available to receive dispatch requests. Merely having the app

open without marking oneself available to receive dispatch requests does not

count in our measure of hours-worked. Because of the computer-mediated

nature of the market, this hours-worked quantity (as well as time on the trip) is

measured essentially without error, aside from rare technical glitches (Varian,

2010).

Our definition of hours-worked does not perfectly capture what one might

regard as working, or what is commonly reported as work hours in govern-

ment statistics. Being available to receive ride requests does not, in itself,

exclude other time uses. For example, drivers may mark themselves avail-

able for dispatch while performing personal errands or “commuting” to where

they normally seek passengers (such as the airport or central business district

4Cohen et al. (2016) uses variation in surge pricing to estimate the elasticity of demand
for UberX at several points along the demand curve.
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in a city), inflating our hours-worked measure. Similarly, drivers may mark

themselves available for ride requests while performing other flexible work.

Drivers also report driving with multiple ride-sharing platforms simultane-

ously, going offline on the Uber app only after being dispatched by another

platform, or in some cases keeping both apps on and simply turning down

dispatches as needed.5

Although these definitional ambiguities require us to be careful in interpre-

tation, they would mainly create complications if our interest was in “levels”

rather than in “changes” and our interest is primarily in changes to the market

equilibrium.6

2.3 Measurement of driver hourly earnings rates

To construct a measure of the driver hourly earnings rate for a city in a given

week, we divide the total weekly driver revenue by the total hours-worked. This

method is equivalent to averaging all driver-specific estimates of the hourly

earnings rate and weighting by individual hours-worked. For the driver gross

hourly earnings rate, we omit reimbursements for known tolls and fees (such

as airport fees) and deduct Uber’s service fee.

Drivers are eligible for promotional payments that typically depend on

meeting various goals, such as the number of rides provided in a week. When

we explore the effects of promotional payments, we allocate the payments as

earnings in the week in which they were paid. Some promotional payments

5Such “multi-homing” behaviors lead to double-counting of some hours-worked (while
the driver is waiting for dispatch) but under-counting others due to time spent on trips
for the other platform. However, under reasonable assumptions (e.g., Poisson arrivals of
trips), the measured utilization of a multi-homing driver on one platform is the same as
the utilization as a non-multi-homing driver. Thanks to Jason Dowlatabadi for helping
us see this point. Despite the possibility that competitor platforms matter, we find no
evidence that the share of direct Uber competitors—and thus, presumably, the opportunity
for multi-homing—affects our results. See §B.4. For a theoretical analysis of the effects of
multi-homing in ride-sharing markets, see Bryan and Gans (2019).

6For example, there is a legal debate on whether hours spent preparing to work—
such as commuting and putting on work clothes—are compensable. See “Fact Sheet 22:
Hours Worked Under the Fair Labor Standards Act“ https://www.dol.gov/whd/regs/

compliance/whdfs22.pdf by the US Wage and Hour Division of the Department of Labor.
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unrelated to driving, like those earned for referring another driver, are omitted.

2.4 Accounting for driver costs

The gross hourly earnings rate measure does not include the costs to drivers,

such as fuel, wear and tear on the vehicle, and other consumables. As many of

these costs depend on the number of miles driven, average costs likely change

with the utilization, as unutilized drivers waiting for dispatch can reduce ex-

penses by driving more slowly or even stopping completely. Although we lack

speed data for the full panel, we do have city-specific average speeds of drivers

for July 2017, conditioned on whether or not the driver was with a passenger.

As expected, the average speed is substantially lower when the driver is

without passengers. The average speed difference is about 5.4 MPH, or a 30%

difference from the baseline speed. We do not know on a driver-by-driver basis

how much this speed reduction lowers costs, as the reduction depends on the

driver’s vehicle. However, we can make some assumptions to construct an

estimate of average costs based on average utilization.

Suppose drivers have an average speed of sPax when active and sNoPax when

inactive i.e., without passengers. If the utilization in a city is x, in a given hour

of work, a driver drives xsPax + (1− x)sNoPax miles. The cost-per-hour in city

i is then just this average miles per hour times the imputed cost per mile. We

use the rate of $0.30/per mile, the median estimate from Zoepf et al. (2018).

This multiplier is intended to capture the full direct costs of a mile driven,

but not the costs of effort. Using this rate and the city-specific speed data,

we can calculate measures of net hourly earnings. For the inactive speed, we

apply the 30% adjustment to the active speed that week (assuming the July

2017 measured difference applies to all periods).

3 Data

Our panel consists of 36 US cities over 138 weeks, beginning with the week

of 2014-06-02 and ending with the week of 2017-01-16. All cities in the panel
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have an UberX service, though only some have an UberBlack service. To

construct our panel, we started with the 50 largest US cities by total trip

volume at the end of the panel. From this panel, we then removed cities that

had substantial changes to the areas of service availability or significant within-

city geographical variation in pricing.7 These cities include Boulder, Denver,

Indianapolis, Las Vegas, Philadelphia, Austin, Portland, Palm Springs, San

Antonio, Ventura, New Orleans, and Miami, and the “cities” of Connecticut,

New Jersey, and Greater Maryland, which were managed as cities in Uber’s

system but did not functionally represent single markets.

The panel is slightly unbalanced in that we lack early data for Charleston

and Richmond (20 total missing weeks) which had relatively late introductions

of UberX. The panel begins with the week in which driver earnings data is

first reliably available; prior to 2014-06-02, historical driver earnings cannot

be reconstructed with sufficient confidence for our purposes.

3.1 Panel-wide averages over time

We first simply plot the weekly averages for the base fare index and our main

outcome measures, pooled over all cities in the panel. Figure 1 shows, from

top to bottom, the mean base price index, hourly earnings rate, utilization,

average surge, and median wait time. All series are normalized to have a value

of 1 in the first period of the panel.

In the top panel, we can see that there has been a long-run decline in the

price index, though it has not been strictly monotonic. There are two clear

sharp drops in the price index at the start of both 2015 and 2016 when Uber

cut fares substantially in many cities. We will refer to these as the January

fare cuts.

For the other market outcomes, Figure 1 shows several things. Perhaps

most notably, the hourly earnings rate time series shows no obvious trend,

7The 50-city starting point is, of course, somewhat arbitrary, but this cutoff ensures a
long panel of cities with substantial markets. As it is, not all cities in our panel are complete
because even the top 50 include several markets that were not very mature at the start of
the panel.
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Figure 1: Average UberX market attributes over time for the US city-week
panel, as indices
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Notes: This figure plots the city-week panel weekly average for a collection of UberX market
outcomes. All cities are weighted equally—see §3 for a definition of the sample. All series
are turned into an index with a value of 1 in the first week.

though it does fluctuate. In contrast, driver utilization has increased substan-

tially. There is little systematic change in average surge levels. Wait times

were high early in the panel, but fell substantially by early 2015 and are more

or less constant afterward.
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3.2 The January fare cuts as event studies

The patterns shown in Figure 1 around the January cuts preview some of the

main results from our regression analysis—namely little persistent change in

the hourly earnings rate despite large changes in the base fare index. Immedi-

ately after the January fare cuts, the average surge increases, as does utilization

and wait times. However, only utilization seems to show a persistent change

in levels. Of course, we can present more credible evidence in a regression

framework, but this “event study” approach offers visual confirmation of the

direction of some of the effects.

3.3 Variation in base fare prices by city

As we saw in Figure 1, there were two large price reductions in January.

However, Uber has changed the base fare for UberX in every city in the panel

multiple times over the period covered by the panel. All these fare changes

are shown in Figure 2a, with changes annotated in the week in which the

UberX base fare index changed for the panel cities. The size of the change

(as a percentage from the week before) is listed. A gray tile indicates that no

change occurred that week.

Cities are listed in descending order of their average base fare over the

period. A black dot next to the city’s name indicates that that city had an

UberBlack service. The large January fare cuts are clearly visible as a vertical

band.

Figure 2b plots the histogram of all fare changes in the panel. We can see

fare reductions are more common than fare increases, though fare increases are

not rare. Fare reductions are also larger in magnitude than fare increases, on

average. When discussing effects, we will describe the effects as if all changes

were increases, though we use both increases and decreases for identification.

The decision to change fares in a particular city was made centrally by

Uber’s internal pricing team, but in consultation with the responsible local

teams. None of the authors of this paper were involved in this decision-making,

but our understanding is that the pricing team considered market metrics when
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Figure 2: UberX base fare index changes for US cities

(a) By-week changes
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deciding on fare changes—primarily driver utilization but also average surge

and hourly earnings rates. In short, prices appear to have been selected in

response to observables.

Our analysis of the attributes of cities selected for large January fare cuts

supports this view that utilization differences largely explained selection, at

least with respect to the magnitude of fare cuts. Uber also claimed to be

considering future changes in demand—namely reductions in demand due to

impending winter weather—though this heuristic was apparently imperfectly

followed, as we will show. Regardless, this kind of conditioning can readily be

handled with our empirical approach, as we will discuss.

Although we will discuss identification issues at length in §5, it is useful

to note that several gross features of the variation in price changes suggest a

credible panel analysis is possible.

First, as every city in the panel had fare changes, it is not the case that

latent differences exist between the kinds of cities that have fare changes and

those that do not. A counter-point, however, is that we do not have true

controls that never experienced any fare changes, which can create other com-

plications (Goodman-Bacon, 2018). However, we are able to extensively break

up our long panel into sub-panels to look for the kinds of heterogeneity in

effects that would indicate a problem.

Second, Figure 2a shows that many changes took place in numerous cities

nearly simultaneously, ruling out highly city-specific explanations for the ex-

istence of fare changes.

Third, although many changes are nearly simultaneous, they are not per-

fectly simultaneous. There is evidence of a staggered roll-out of some changes,

with timing differing by a few weeks. It seems unlikely that the precise se-

quence of cuts reflects important latent differences between cities.

4 Model of a ride-sharing market

To explore the welfare implications of price changes and guide the empirics, we

develop a simple model of a ride-sharing market. Although there are extant
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models of taxi markets, they tend to focus on the micro details of search and

matching, and the unique market properties this search process generates, such

as non-existent/multiple equilibria or industry-level scale economies due to the

nature of cruising e.g., Arnott (1996); Frechette et al. (2015) and Cairns and

Liston-Heyes (1996).8 Our view is that we can usefully abstract away from

the micro-details with market-level supply and demand curves that can be

thought of as capturing population preferences over some substantial amount

of time.

There is a price, p, for an hour of transportation that is set by the platform.

This includes the base fare and the average surge multiplier.9 Drivers provide

hours of labor that are turned into hours of transportation at a rate x, which

is the endogenous market-level utilization. From an hour of work, drivers get

udrv = (p− c)x where c is the added flow expense of being on a trip because

of increased wear and tear, greater fuel expenditure, greater effort, and so

on, versus being off-trip. Drivers collectively supply H((p − c)x) hours, with

H ′(·) > 0.10

8There is some newer work that builds on these insights (Castillo et al., 2017), some of
which directly estimate models of search (Frechette et al., 2015; Buchholz, 2015).

9See Hall et al. (2016) for evidence on the role of Uber’s surge pricing in clearing the
market when demand spikes. Banerjee et al. (2016) discusses how dynamic pricing can add
robustness to a system in the face of uncertainty in model parameters. See Castillo et al.
(2017) for a discussion of the importance of surge pricing to prevent nearly discontinuous
changes in wait times when demand outstrips supply.

10Our treatment of driver labor supply is simple, ignoring behavioral considerations, such
as income targeting (Camerer et al., 1997; Thakral and Tô, 2017) and even whether labor
supply changes are due to extensive or intensive margin adjustments. Rather, we assume
that labor supply can be captured with a single supply curve of total hours-worked. There
is some evidence that behavioral labor supply considerations are relatively unimportant.
Farber (2005, 2008) argues that income targeting findings are mostly due to division bias,
and that driver behavior is mostly consistent with the neoclassical labor supply model.
Errors in the measurement of hours-worked tend to attenuate an estimate of the labor supply
since the measurement of hours is also used to calculate the wage. A key advantage of our
empirical setting is that we can measure hours-worked essentially without error. Farber
(2015) shows that there is substantial heterogeneity in individual labor supply elasticities
and that drivers that do not learn to work more when wages are temporarily high are
not long for the taxi driving profession. Using data from Uber, Chen and Sheldon (2015)
also presents evidence that Uber drivers are responsive to hourly earnings in a neoclassical
fashion and that there is little evidence of income targeting. Also using data from Uber,
Angrist et al. (2017) also find no evidence of income targeting.
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Passengers are sensitive to the price of an hour of transportation, but also

the quality. The primary quality dimension of interest, at least in the short-

run, is the wait time, or the time elapsed from requesting a ride until actually

starting a trip (see Buchholz et al. (2020) on the value would-be passengers

place on waiting time).11 We assume that the wait time is determined by the

market tightness, which is the ratio of passengers demanding trips and the

drivers actively working. In equilibrium, this market tightness is the same

as utilization, as we will show.12 Intuitively, the reason for this relationship

between utilization and wait time is that, all else equal, a higher utilization

means the nearest available driver is farther away.

The cost of the wait time to passengers is φ(x), with φ′(x) > 0, and

φ′′(x) > 0 and so passenger utility from an hour of transportation is upax = −(p+ φ(x)).

There is a market-level demand for hours of transportation, D(p+ φ(x)), with

D′(·) < 0. Market-clearing requires that

D(p+ φ(x)
︸ ︷︷ ︸

−upax

) ≡ xH((p− c)x
︸ ︷︷ ︸

udrv

). (1)

Note that supply hours are scaled by x, the utilization, and that equilibrium

utilization is also the equilibrium market tightness, i.e., x∗ = D∗/H∗.

In Figure 3, we indicate possible equilibria with a heavy, downward-sloping

line. These are the prices and utilization levels that satisfy Equation 1. The

x-axis is the level of driver utilization, x and the y-axis is the price, p. The

origin is the passenger’s bliss point—a very low price and low utilization, which

means short wait times. The driver’s bliss point is up and to the right—a very

high price and high utilization, which gives a high hourly earnings rate.

Proposition 1 shows that the market equilibrium utilization, x, is decreas-

11Although there could be a decline in service quality not measured by wait times, the lack
of composition effects on the driver extensive margin (as we will see) makes this somewhat
unlikely, though drivers could presumably be ruder or less helpful, keeping a less clean car,
and so on.

12Although we do not explicitly model the micro-details of matching, the specific wait
time/utilization assumption we make is easy to motivate with a reasonable matching func-
tion between passengers and empty cars—See Appendix A.4.
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Figure 3: Possible equilibria and driver and passenger indifference curves
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ing in the price, p: there is an equilibrium trade-off between price and utiliza-

tion.

Proposition 1. The market-level utilization is declining in the price: dxeq

dpeq
≤ 0.

See Appendix A for proof.

There is an equilibrium for each choice of p, but there are three equilibria

that are of special interest, labeled A, B, and C in Figure 3: A, the driver-

preferred equilibrium, which maximizes (p− c)x and hence hours of work (as

H ′(·) > 0); B, the Pareto equilibrium (where driver and passenger indifference

curves are tangent to each other); and C, the passenger-preferred equilibrium,

which minimizes p + φ(x) and hence maximizes hours of transportation (as

D′(·) < 0). Proposition 2 characterizes the three equilibria in terms of driver

and passenger indifference curves and a set of possible equilibria. Let p∗drv
and p∗pax be the prices at A and C, respectively. An important implication of

Proposition 2 is that p∗drv > p∗pax and, following from Proposition 1, x∗

drv < x∗

pax.

The reason the driver’s indifference curve is tangent at A is that from the

driver’s preferred equilibrium, any change in equilibrium price (i.e., movement

along the heavy black curve of possible equilibria) would make a driver worse

off. A similar logic applies at C for the passenger’s indifference curve.
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At the point, B, the Pareto equilibrium, the driver and passenger indiffer-

ence curves are tangent to each other. However, they are not tangent to the

possible equilibria curve—from B, drivers would still prefer a higher price and

passengers would prefer a lower price.

Although thez label of B as the Pareto equilibrium would seemingly imply

some special desirability, it is just that at B, both passengers and drivers

would be indifferent to the same small increase in price that came with a

specific utilization increase/wait-time decrease. However, this trade-off is not

even possible at B so long as A and C are separate equilibria.

Proposition 2. The three “interesting” equilibria are:

A) Driver-preferred (p∗drv, x
∗

drv) :
p∗drv − c

x∗

drv

=

∣
∣
∣
∣

dpeq
dx

∣
∣
∣
∣

B) Pareto (p∗P , x
∗

P ) : φ′(x∗

P ) =
p∗P − c

x∗

P

C) Passenger-preferred (p∗pax, x
∗

pax) : φ′(x∗

pax) =

∣
∣
∣
∣

dpeq
dx

∣
∣
∣
∣
.

with p∗drv ≥ p∗P ≥ p∗pax and x∗

drv ≤ x∗

P ≤ x∗

pax. See Appendix A for proof.

In considering the effects of fare changes on the market equilibrium, there

is one unambiguous prediction: a higher fare will lower utilization (Propo-

sition 1). For other market outcomes, the predicted effects depend on the

equilibrium that prevailed when the change was made. When the price is

above what drivers would prefer (higher than A), a fare decrease can raise

both hours-worked and hours of transportation and is Pareto-improving. Be-

low this price but above the passenger’s preferred point (in between A and

C), fare cuts are desired by passengers but not by drivers. At the passenger’s

preferred price and below (prices less than C), further price cuts make both

sides worse off and so price increases would be desired from this price level.

In the model, because hours-worked is monotonic in driver utility and hours

of transportation is monotonic in passenger utility, changes in these quantities

following fare changes are sufficient statistics for changes in welfare for each

side of the market. The signs of these changes in quantities also partially

17



identify the location of the equilibrium from which a change was made, namely

whether the equilibrium price that prevailed was 1) above the price at A, 2)

below the price at A but above the price at C or 3) below the price at C. The

market-level comparative statics are summarized in Proposition 3.

Proposition 3. The effects of a fare increase from p on market quantities are:

x D H

p > p∗drv ↓ ↓ ↓ Fare cut Pareto-improving

p∗drv > p > p∗pax ↓ ↓ ↑ Ambiguous; Pax want cuts; Drivers want increases

p < p∗pax ↓ ↑ ↑ Fare increase Pareto-improving.
See Appendix A for proof.

It might be tempting to use this model to derive platform incentives, but

given that these platforms likely do enjoy scale economies (Arnott, 1996), a

static perspective on profit-maximization would likely be highly misleading as

a description of their actual behavior.

5 Results

In this section, we present estimates of the effects of changes in the base fare

on market outcomes. We will first present the static, long-run effects of fare

changes, and then report results from dynamic specifications that allow us to

trace out the market adjustment. It is important to emphasize that we are

not estimating supply or demand elasticities, but rather characterizing the

movement from one market equilibrium to another.

Unlike in the model, the platform does not choose p directly. Instead, the

platform changes a base fare index, b, with the actual p faced by passengers,

on average, being p = mb, where m is the average surge multiplier, which is

also a choice made by the platform.

Regarding connecting the model to empirics, fare increases should lower

utilization and decrease wait times. However, the effect on hours of trans-

portation and hours of work depends on “where” the market is on the possible

equilibria curve. While we might think of the direction of effects partially iden-

tifying the equilibrium that prevailed in all markets, different markets could
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be in different equilibria when fares were changed. This difference could po-

tentially lead to us making a kind of ecological fallacy if we presumed that the

average effect applied to each unit. This composition possibility requires us to

be cautious in interpretation, but to the extent we think Uber was pricing sim-

ilarly in all markets, the sign of effects on quantities should indicate “where”

these markets existed according to Proposition 3. Empirically, there is no evi-

dence for concern about composition.13 When we divide the panel into shorter

sub-panels, we find similar results in each panel, suggesting that despite large

changes in average fares over time (generally downward), the same directional

effects prevailed and that all markets were operating in the A to C “range.”

5.1 Static estimates of effects on market-level outcomes

Our baseline specification is

yit = αi + β1 log bit + git+ dt + ǫit, (2)

where yit is some market-level outcome of interest in city i during week t, αi

is a city-specific fixed effect, bit is the base trip price index, gi is a city-specific

linear time trend, dt is a week-specific fixed effect and ǫit is an error term.14

Figure 4 plots estimates of β1 from Equation 2 for a collection of market

outcomes, along with 95% CIs. Each facet of the figure reports estimates of

different measures of the same “kind” of market outcome. For example, the

facet labeled “Passenger-side Quantities” reports the effect of a fare increase

on the log total hours of transportation (which is the quantity described in

the model), but also the number of requested trips and completed trips. In

each facet, our primary outcome estimated is plotted in black and shown first;

related but secondary outcomes are shown below and plotted in gray.

13This analysis is in §B.6.
14In §B.9, we report all regressions reported here, but without city-specific time trends.

Generally, these trends improve the precision of the estimates (particularly for market quan-
tities), as forcing all cities to only differ by a level over the entire panel leads to systematic
residuals for some cities.
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Figure 4: All point estimates of effects of Uber fare changes on market out-
comes
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Notes: All estimates are of β1 from Equation 2. These regressions in table form are in §C.

5.1.1 Dynamic pricing/surge

In the facet of Figure 4 labeled “Dynamic Pricing/Surge” the only outcome

is the average surge multiplier. With a higher base fare, the average surge

multiplier declines. However, the effect is not large enough to undo a base

fare change (it would need to have a point estimate of −1, not the ≈ −0.2 ob-
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served). We can conclude that in equilibrium, passengers faced higher average

prices after a fare increase.

5.1.2 Passenger-side quantities

In the facet of Figure 4, labeled “Passenger-side Quantities,” the first outcome

is the log total hours with passengers. This outcome corresponds to D∗ in the

model. We can see that a higher base fare reduces the equilibrium number

of hours of transportation. The effect size is about a 2.5% reduction in total

transportation hours from a 10% increase in the base fare. Other quantity

outcomes in this facet—the log total completed trips, as well as the log total

requested trips (regardless of whether they were completed)—show broadly

similar, if somewhat smaller, effect sizes.

These quantity point estimates—a 10% fare decreasing trips by about

2.5%—are smaller than the demand elasticities estimated by Cohen et al.

(2016), which uses step variation in surge pricing. The difference in the esti-

mates highlights the difference in the nature of the quantity we are estimating,

namely the change from one market equilibrium to another, rather than the

slope of a demand curve. As we will see, with a higher fare, wait times fell

considerably and this surely matters to would-be passengers (Buchholz et al.,

2020), and so a fare change should not be thought of as the market moving

along a demand curve.

An implication of the reduction in hours of transportation is that fare

increases were being made from an equilibrium where p > p∗pax, i.e., the price

was not so low that passengers welcomed the fare increase (which follows from

Proposition 3).

5.1.3 Wait times

In the facet of Figure 4 labeled “Wait times,” the two outcomes are the median

estimated and actual wait times. Both decreased substantially with a higher

fare. Presumably, this would have some offsetting effect on demand (recall

φ′(x) > 0), though to reiterate we cannot measure the effect, as is confounded
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with the effects of the fare change.

5.1.4 Driver-side quantities

In the facet of Figure 4 labeled “Driver-side Quantities,” the first outcome is

the log total number of hours worked by drivers. This outcome corresponds

to H∗ in the model. We can see that with a higher base fare, drivers work

more hours in total. The increase in hours-worked is consistent with the fare

increase happening from a p < p∗drv, i.e., drivers welcomed the fare increase.

Combined the passenger-side analysis that p > p∗pax, we have evidence that

fare changes were happening from an equilibrium in the range of equilibria

between the driver and passenger most-preferred equilibria, i.e., between A

and C in Figure 3.

We also report the effects of a fare increase on the number of active drivers

and the number of hours-worked per active driver. Both increase substantially

with a higher fare, though the intensive margin effect is larger. We also report

the effects on the log number of driver sign-ups, though this outcome is so

imprecisely estimated that little can be concluded.

5.1.5 Driver productivity/utilization

In the facet of Figure 4 labeled “Driver Productivity/Utilization,” the first

outcome is driver utilization or x∗ in the model. Consistent with Proposition 1,

a higher fare causes a lower utilization. The effect is substantial: a 10%

increase in the base fare reduces equilibrium utilization by about 7%. We also

report the log number of trips per hour-worked, which also declines, as does

the log number of passenger miles per hour-worked. These outcomes point to

a lower driver technical productivity with higher fares. However, given the

increase in the fare, productivity has not necessarily changed, as drivers are

performing fewer but more valued trips on the margin.
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5.1.6 Driver compensation

In the facet of Figure 4 labeled “Driver Compensation,” the first outcome is the

log gross hourly earnings rate. This would correspond to ≈ px in the model, as

costs are not included. The effect of a fare increase is slightly positive, but the

confidence interval includes zero: a 10% increase in fare raises driver hourly

earnings by 0.7%. If driver hourly earnings did increase, it is consistent with

fare increases being made from within the A to C equilibrium range.

Unlike the model, the platform can pay drivers beyond what they earn

from trips through “promotional payments.” The next outcome in the facet

is the log hourly earnings rate including promotional payments. The effect is

slightly positive and similar to the gross hourly earnings measure. While the

confidence intervals clearly overlap and relative comparisons are hard to make,

we would expect the measure with promotional payments included to show an

effect closer to zero, as fewer drivers would fall below a floor level of earnings

(which could trigger promotional payments).

We can look directly for evidence of promotional payments making up for

lowered cumulative earnings. The next outcome in the facet is the fraction

of a driver’s earnings from promotional payments. Note that this measure is

not in logs, as there are numerous zeros, as relatively few cities in the panel

actually use promotional payments at all. The promotional payment fraction

declines slightly, consistent with the effect on the hourly earnings rate including

promotional payments being slightly closer to zero.

The last measure is the log gross hourly earnings rate minus inferred costs,

which is a measure that imputes miles driven per hour and uses a $0.30/mile

rate. The effects of a fare increase are also slightly positive for this measure,

but far less precise than the other measures.15

Although there is no strong evidence of an increase in driver hourly earn-

ings, given the increases in hours-worked observed in the driver-quantities anal-

ysis, it seems likely that the net effect on driver utility from a fare increase was

positive, consistent with markets being at an equilibrium “between” A and C

15Likely due to the inferred costs shifting the outcome in levels to the left, and thus
inflating the variance in a logged outcome.
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when fares were changed.

5.2 Dynamics of market adjustment

There was little to no long-run pass-through of the fare changes into the driver

hourly earnings rate, but large changes in wait times and utilization. However,

presumably, this effect was not realized immediately, but rather was the result

of a market adjustment that took place over time. To explore how the markets

adjusted over time, we estimate a finite distributed lags model,

yit = αi +
NumPost∑

τ=NumPre

βτ log bit−τ + dt + git+ ǫit, (3)

where αi is a city-specific fixed effect, bit is the fare index in city i at time t, τ

the number of weeks from the focal week, gi is a city-specific linear time trend

and dt is a week-specific fixed effect. The number of pre-period week indicators

is NumPre and the number of post-period weeks indicators is NumPost.

Note that with this specification, multiple fare changes can be included in the

estimate and a “focal” week does not need to be specified.

We impose the restriction when estimating the model that
∑0

τ=NumPre
β̂τ = 0

i.e., that the cumulative effect in the week prior to the fare change is 0. This

allows for cities having fare changes to differ from those not having changes in

a given week by a level amount, but the inclusion of multiple per-period win-

dows still allows us to detect whether those cities were on different trajectories

with respect to the outcome.16

The implied weekly effects from Equation 3 are plotted in Figure 5 for the

log hourly earnings rate, log utilization, and log surge. For comparison, the

“static” Equation 2 effect for each outcome is also plotted at the “0” time. For

each regression, standard errors are clustered at the level of the city.17 There

16In §B.9 we report the same distributed lag models as in the main body, but without
imposing the zero effect at week -1 assumption. For some outcomes, not imposing this
restriction leads to pre-period effects that are systematically higher or lower, but as expected,
we see no evidence of trends. Further, the pre-period level differences are generally fairly
modest in magnitude.

17We also conducted a block bootstrap at the city level to test for Bertrand et al. (2004)
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Figure 5: Effects of a base fare increase on the driver hourly earnings rate and
its components
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Notes: This figure plots the by-week cumulative effects of changes in the UberX base fare
on market outcomes. These effects are from an estimation of Equation 3; at t = 0, the
static estimates from Equation 2 are shown. The sample is a panel of US cities—see §3 for
a description. The x-axis is weeks relative to a fare change.

problems, but we found that the bootstrap standard errors were almost identical to the
clustered standard errors, so we only report clustered standard errors.
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are 15 pre-periods and 25 post-periods. These leads and lags were selected

by visually inspecting various combinations and seeing where the cumulative

effect “flattens out” in the post period and then doing a sensitivity analysis

around the window length choice.18

In the top facet of Figure 5, the outcome is the log gross hourly earnings

rate. Prior to the fare change, we see no evidence of a worrisome trend. If we

look at effects over time, following a fare increase, the driver hourly earnings

rate increases immediately, though there is considerably less than a full pass-

through; the elasticity point estimate is only about 0.6 in the first week after.

In the weeks that follow, this increase in the hourly earnings rate declines,

with the point estimate at week 8 being 0.1. Unlike the static estimate, the

long-run estimate near the end of the post-period is negative, albeit with a

95% CI that includes zero.

In the second facet from the top of Figure 5, the outcome is the driver

utilization. In the pre-period, there is no evidence of a trend. Utilization

falls following a fare increase, though the effect is not immediate—in the 0

week, the effect is almost precisely 0, whereas we observed that the driver

hourly earnings rate jumped immediately. However, by week 8, the elasticity

point estimate is -1, which is close to the estimate of the static effect from

Equation 2.

In the second facet from the bottom of Figure 5, the outcome is the log

average surge. There is no obvious trend in the pre-period and the pre-period

weekly point estimates are all close to zero. The average multiplier gradually

declines following a fare increase. By week 8, the effect is pretty close to the

static estimate that a 10% increase in fares reduces average surge by 2%.

In the bottom facet of Figure 5, the outcome is the log median wait time.

There is no evidence of a pre-trend, and post-fare cut, the path is similar

18In §B.9, we report our preferred regression specification but vary the post-period band-
width. The various plots illustrate that results are not sensitive to somewhat larger and
smaller lead/lag windows. Because of the structure of our data, larger pre-period windows
do cause a loss of usable data. Given that the state of the literature on lead/lag selection
seems more art than science, we felt a visual approach checked for robustness with different
periods was preferable to something more model-driven.
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to the path of driver utilization. With a higher fare, the wait time declines

substantially.

6 Identification issues

There are a number of threats to identifying the effects of fare changes on mar-

ket outcomes. For some of these putative threats, our regression specification

alone is sufficient. For other threats, our approach is diagnostic, in that we

assess the existence or extent of the problem, often by using other sources of

data or conducting various robustness checks. For threats for which we have

no diagnostic test, we rely on secondary sources to assess whether the issue

is likely to affect our results. In this section, we discuss the issue and make

references to appendices where the actual analysis is reported.

6.1 What was Uber doing?

The variation in fares was created by Uber, but we do not fully know their

decision-making process. Perhaps Uber—but not us—had access to informa-

tion that allowed it to make accurate predictions about city-specific trajecto-

ries, and was conditioning its decisions accordingly. We view this as unlikely.

As Uber fare changes were controversial, they received media attention,

which we summarize in §B.1. Contemporaneous media reports of Uber’s

decision-making—including reviews of leaked spreadsheets that were used as

decision support tools—strongly imply that Uber’s “forecasting” models were

in fact simply accounting exercises. The spreadsheets calculated how many

more trips a driver would have to complete to keep their earnings the same

given what was observed in the past—with no consideration of how fare

changes would change both supply and demand in reality. In short, if these

spreadsheets were used as described, Uber’s decision-making could be charac-

terized as selecting on observables that we observe.

As a direct piece of evidence for this selection on observables claim, we can

use the January cuts as a kind of case study. Using the January fare cuts,
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we show in §B.1 that the magnitudes of the cuts were clearly conditioned on

city-specific measures of utilization that prevailed before the cut, but not on

trends.

Uber’s pricing decisions could be selecting on trends rather than levels.

We partially address this concern by including city-specific linear time trends

in Equation 2. We can also diagnose whether there is a violation of parallel

trends by plotting cumulative effects from a distributed lag model, prior to

treatment. We find no evidence of pre-trends in any of our outcomes—this

can be seen for some outcomes in Figure 5.

6.2 Other potential factors

Even if there are no unmodeled city-specific dynamics prior to a cut, a worry

is that cities selected for fare changes were about to have some change in

conditions that motivated the change, thus violating the strict exogeneity as-

sumption. Three likely candidates are (1) weather-related demand shocks, (2)

the action of competitors, and (3) local economic conditions.

For weather, we can compare the two January fare cuts to see if cold

weather cities are exclusively getting cuts. We do this comparison in §B.2,

finding that in each set of January fare cuts, many warm-weather cities get

cuts and many cold-weather cities do not. This analysis also supports the view

that cities receiving cuts were not on different trends, as we can see graphically,

that cities receiving January cuts were not on different trajectories relative to

“control” cities.

Further supporting the argument that weather was not important for se-

lecting cities for January fare cuts, across the two January cuts, there is sub-

stantial variation in who is “treated” and who is not. We can exploit the

fact that not all cities had the same “treatment assignment” around the two

January cuts to perform a placebo test. Our long time period also allows

us to include city-calendar month-specific fixed effects to capture city-specific

changes due to climate differences. Doing this analysis in §B.3, we find that

our key point estimates do not change substantively with the inclusion of these
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city-calendar month effects.

Uber is not the only ride-sharing company, and in the period covered by

our data, Uber faced direct competition from other ride-sharing platforms

in some cities. Despite the possibility that the market adjustment process

could be affected by the presence of competitors—namely by making both

sides more elastic—using data on city-specific ride-sharing platform shares,

we find no evidence that this is the case. However, it is important to note that

during most of the period covered by our panel, competition from alternative

ride-sharing platforms was nascent. Furthermore, to the extent competitor

ride-sharing platforms followed the pricing decisions of Uber, a fare change

could have been, in a sense, market-wide. We have some limited evidence that

Uber’s competitors matched Uber’s fare changes but lack the comprehensive

by-week pricing data we have for Uber.19

For direct competitors, we calculate Uber’s share of the ride-sharing cate-

gory in each city week, using monthly data, and then see whether controlling

for share changes the results. We do this analysis in §B.4 and find that includ-

ing Uber’s imputed ride-sharing share leaves the key point estimates more or

less unchanged. We also interact the base fare with this share measure to see

whether the extent of ride-sharing competition affected the adjustment pro-

cess. We find no evidence that they do, though it is important to re-emphasize

during the period covered by our panel, direct ride-sharing competition was

in many cities non-existent.

For local economic conditions, we can also control for city-specific local

economic conditions, as measured by the MSA unemployment rate, which we

do in §B.5. We find no evidence that the inclusion of these controls affects the

results.

Even with city-specific linear time trends, a concern in a long panel like

19See: https://www.geekwire.com/2014/lyft-slashes-prices-nationwide-20/;
https://techcrunch.com/2014/04/07/lyft-spring-pricing/;
https://www.forbes.com/sites/briansolomon/2016/01/25/

is-uber-trying-to-kill-lyft-with-a-price-war/#1d24e9f56573; https:

//blog.lyft.com/lyftline5?rq=price; https://www.digitaltrends.com/mobile/

lyft-uber-price-cuts/; http://fortune.com/2016/01/15/lyft-price-cuts/;
https://blog.lyft.com/posts/start-off-2016-with-lower-prices?rq=price.
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ours is that even a city-specific linear trend is not sufficient to meet the strict

exogeneity assumption. For example, cities with lower-than-expected utiliza-

tion, even conditional on the included controls, might be targeted for fare

changes, creating a correlation between ǫit (as specified) and bit in Equation 2.

A related problem in a long panel like ours (in which units are treated mul-

tiple times) is the possibility of treatment effect heterogeneity creating “bad”

controls, leading to undesirably weighted estimates (Abraham and Sun, 2018;

Athey and Imbens, 2018; Goodman-Bacon, 2018).

One diagnostic approach to assess this possibility is to divide the sample

into shorter panels and compare sub-panel estimates to the overall estimates,

which we do in §B.6. We find that both the “short T” point estimates are

quite similar to the full panel estimates for all our outcomes. This lack of dif-

ference suggests our Equation 2 specification is sufficient, as well as undercuts

the notion that treatment effects might differ over time. Another diagnostic

approach is to conduct the statistical test for strict exogeneity proposed by

Wooldridge, which we do in §B.7, finding that we cannot reject the null of

strict exogeneity.

6.3 Cuts versus increases

Even if β1 from Equation 2 is identified, this single parameter estimate could

mask substantial heterogeneity in effects. For power reasons, we cannot explore

every possible interaction effect, but some could be particularly consequential.

One worry is that the effects of fare cuts could differ from those of fare in-

creases, implying “kinked” demand and supply curves. We diagnose whether

this is a problem in §B.8 by estimating our model with sub-panels in which the

variation in the base fare is all of one “kind,” i.e., all increases or all decreases.

We find that the point estimates for all our outcomes are the same sign and

of similar magnitudes. In short, cuts and increases seem to “work” the same

way.
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7 Discussion and conclusion

The paper’s key finding is that following a fare change, ride-sharing markets

adjust primarily through changes in driver utilization and wait times. This oc-

curs because drivers respond to temporarily higher “wages” by working more

hours, which has a business stealing effect. In the long run, a fare increase

seems to leave driver hourly earnings nearly unchanged, or perhaps slightly

higher. The lack of price effects on average seems to apply even to the in-

troduction of Uber into US cities—Berger et al. (2017) presents evidence that

the introduction of Uber lowered the average hourly earnings of professional

drivers, but as Angrist et al. (2017) points out, the increase in earnings from

self-employed drivers left the average unchanged.

By showing the connection between the product market price and market

efficiency, our results speak to the larger question of why some platforms take

on price-setting, despite the well-known challenges of doing so (Hayek, 1945).

Short of setting a price, a platform could make price comparison easier, which

appears to be sufficient in some cases (Jensen, 2007), but not in all cases

(Dinerstein et al., Forthcoming). In our setting, price comparison would be

relatively costly to buyers given the “perishable” nature of the service and

the large differences in match quality created by the spatial component of for-

hire transportation (Castillo et al., 2013). As such, it seems probable that

without centralized price setting, the logic of Diamond (1971) could lead to

an inefficient high price/low utilization equilibrium, despite free entry on the

supply side.20

Uber has more recently decoupled rider and driver trip prices with upfront

pricing, but drivers generally continue to earn trip pay determined by trip

time and distance. Even with the move towards upfront pricing, Uber still has

to decide on an approximate price level or what the “average” trip will cost.

As such, more sophisticated pricing does not sidestep the issue of choosing

a price level. The platform could switch to an auction model, with drivers

20Filippas et al. (2018) reports the results of an experiment conducted in a computer-
mediated marketplace, showing that the platform substantially raised utilization when it
centralized (and lowered) pricing.
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submitting bids. However, given the “perishable,” time-sensitive nature of the

service, this would likely be surplus-dissipating, especially given the trend in

online markets away from auctions for primarily taste-based reasons (Einav et

al., 2018). Our conclusions should remain relevant to future scenarios where

drivers are paid per trip, regardless of the exact price structure.

With a higher driver utilization, each hour of work is more productive,

allowing Uber to meet the same amount of passenger demand with aggregate

hours of work—though subject to the caveat that wait times matter. Although

utilization is, as we show, highly sensitive to the fare, it also is presumably af-

fected by technological considerations. Many of Uber’s platform improvements

can be interpreted as attempts to raise utilization through technological means,

such as “back to back trips” (matching drivers before their current trip is fin-

ished based on predicted drop-off time and location) and having passengers

re-locate slightly before pick-up.

This paper has focused on market-level attributes and outcomes. A natural

direction for future work would be to take an individual driver’s perspective.

In particular, it would be interesting to consider driver micro labor supply deci-

sions, focusing on the role of individual differences in costs. Although we have

modeled drivers as only caring about utilization to the extent it affects their

hourly earnings, it seems probable that drivers vary in their preferences over

the different utilization equilibria, both because of their personal preferences

about being “busy” as well as their capital, with drivers with less fuel-efficient

vehicles preferring the low utilization equilibrium.
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A Proofs

Proposition 4 was not discussed in the main body, but it is useful for other

proofs below.

Proposition 4. The Pareto set is defined by φ′(x) = (p− c)/x and the Pareto

set price is increasing in utilization, x.

Proof. At points in the Pareto set,

dupax/dx

dupax/dp
=

dudrv/dx

dudrv/dp

φ′(x) =
p− c

x
.

The Pareto set price is increasing in x, as p′(x) = (φ′′(x) + p/x2) > 0, as

φ′′(x) > 0.

A.1 Proof of Proposition 1

Proof. If we differentiate the market clearing condition by p, which is exoge-

nous, we have

dpeq
dxeq

=
H +H ′p−D′φ′(x)

D′ −H ′x
≤ 0, (4)

as φ′(x) > 0 and D′(·) < 0.

A.2 Proof of Proposition 2

Proof. The equilibrium that maximizes driver utility is

max
p,x

(p− c)x s.t. D(p+ φ(x)) = xH((p− c)x).
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which gives us

dUdrv/dx

ddUdrv/dp
=

dpeq
dxeq

−(p− c)/x =
dpeq
dxeq

The drivers prefer an equilibrium where an increase in prices leaves their hourly

earnings unchanged.

Proposition 4 already describes the Pareto equilibrium. The passenger

preferred equilibrium maximizes the hours of transportation. It is equivalent

to minimizing the part inside the demand curve, subject to the market clearing

constraint, or

min
p,x

upax = p+ φ(x) s.tD(p+ φ(x)) ≡ xH((p− c)x).

which is satisfied when

dupax/dx

dupax/dp
=

dpeq
dx

−φ′(x) =
dpeq
dx

.

At the passenger’s preferred equilibrium, a small increase in price has a dis-

utility equal to the utility of marginally shorter wait time.

For the relationship between the possible points, what matters is the rela-

tive slopes of the Pareto curve and the possible equilibria curve. At the Pareto

equilibrium, (p∗P , x
∗

P ), the slope of the possible equilibria curve is steeper than

the passenger indifference curve:

|p′eq(x)| =

∣
∣
∣
∣

Dx

D′ − xH ′
+ φ′(x)

∣
∣
∣
∣
> |φ′(x)|. (5)

As such, there are lower price and higher utilization equilibria interior to the

passenger’s indifference curve at the Pareto equilibrium, and all higher price

lower utilization equilibria are less preferred. Thus, the passenger’s bliss point
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has a lower price and a higher utilization relative to the Pareto point: x∗

pax ≥

x∗

P and p∗pax ≥ p∗P . As the driver and passenger indifference curves are tangent

at the Pareto equilibrium, from the driver’s perspective, there are higher price

and lower utilization equilibria interior to the their indifference curve at the

Pareto equilibrium, and all lower price higher utilization equilibria are less

preferred. Thus, x∗

drv ≤ x∗

P and p∗drv ≤ p∗P .

A.3 Proof of Proposition 3

Proof. From Proposition 1, we know that regardless of the price, a fare cut

increases utilization. From a p that is higher than the driver’s preferred price,

p∗drv, a reduction in fares moves drivers along the possible equilibria curve

closer to their preferred equilibrium, raising their utility. This increases hours-

worked, H. It also moves passengers closer to their preferred point, and so D

increases. When prices are this high, a fare reduction is Pareto improving and

there is no trade-off.

For p < p∗drv but p > p∗pax—prices between the driver and passenger pre-

ferred points—we are moving away from the driver’s preferred equilibrium,

and so hours-worked decline, whereas we are moving close to the passengers

preferred equilibrium and so hours of transportation increase. In this range,

fare changes are not Pareto improving. Finally, for p < p∗pax, we are moving

away from the preferred equilibrium of both types, and so both hours-worked

and trips decline. In this range, a fare increase would be Pareto improving.

A.4 Wait times

Assume a constant returns to scale matching function, m(Cars,Pax’s) between

empty cards and passengers. The instantaneous probability that a passenger

is matched is m((1 − x)H,D)/D, and so the expected time until matching

with a Poisson process in equilibrium is

E[∆t] = m((1− x)/x, 1)−1, (6)
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which depends solely on x. As such, d∆t
dx

> 0, or wait times are increasing in

utilization. Perhaps the assumption of constant returns to scale is not a good

one—see Arnott (1996) for the notion that taxi services should be subsidized

to reap scale economies—but other examples of online matching markets—

even those with a substantial geographic component—seem to show constant

returns to scale e.g., (Cullen and Farronato, 2018). Frechette et al. (2015)

offers evidence of increasing returns to scale when NYC Taxi markets are not

very busy, but essentially constant returns to scale during high usage times.
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B Identification

B.1 Evidence for selection on observables

Despite the plausibility of city-specific forecasts driving decision-making, we

view this as unlikely. Instead, the evidence is most consistent with Uber

conditioning on observable attributes of a city available to us as researchers—

namely the current level of utilization in a city.

Part of the evidence on Uber’s decision-making comes from media reports.21

Buzzfeed News independently examined the spreadsheets Uber used to explore

pricing and reported that these spreadsheets were not forecasting models at

all, in that they “. . . don’t predict the true effects of price cuts” but rather,

according to Uber, simply “simulate various scenarios that could happen.”

As best we can tell, the spreadsheets were intended to look at how a change

in the price parameters would mechanically affect what a driver would have

earned had they completed the same trips as before—and to calculate how

many more trips a driver would have to provide to keep earnings per hour the

same:

the spreadsheets seem to estimate how many more rides price cuts

would have to (our emphasis) generate in order to keep gross driver

earnings stable. But that increase in rider demand is not guaran-

teed.

There was apparently no forecast made in the spreadsheet models about what

the effects of the price changes would have on demand or supply. Instead, this

“forecasting” was actually Uber considering current conditions in the city—a

data-generating process that a suitably specified fixed effect panel model can

accommodate.

Note that if Uber were conditioning on anticipated treatment effects—such

as choosing cities with low utilization for fare cuts precisely because these cities

21https://web.archive.org/web/20181227210723/https://www.buzzfeednews.com/article/carolineodonovan/uber-
documents-suggest-price-cuts-dont-always-raise-driver-w Uber did claim that these were
not the only tools used to explore pricing, but we know of no other forecasting tools being
used.
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would have large treatment effects—strict exogeneity still allows us to identify

the average effect, but the interpretation would be different than a case with

homogeneous treatment effects. The estimated treatment effect, in this case,

would be a weighted average of effects.22

B.1.1 Evidence for selection on utilization for the January cuts

In the bottom row of Figure 6b, the size of each city’s fare cut is plotted

versus the city’s utilization 3 weeks before the fare cut. This point is indicated

with a black dot, which is also the base of an arrow. The tip of that arrow is

that same city’s utilization 3 weeks after the fare cut. A loess-smoothed line

is fit through the initial utilization points. The 2015 January cut is on the

left and the 2016 January cut is on the right. For both January periods, we

can see that cities with lower utilization were clearly targeted for larger fare

reductions. The lower the utilization, the larger the cut, on average.

In the top panel Figure 6b, cities that did not receive January cuts are

arranged on a number line by their pre-period utilization level. All have a

fare “cut” of 0%, but to prevent over-plotting, they are arranged vertically by

their utilization. We can see that the utilization of the cities not receiving cuts

had substantial overlap with those cities having cuts, suggesting that selecting

cities for cuts was not based strongly on utilization, even if the magnitude of

the cuts was based on utilization, conditional upon receiving a cut.

By examining the length and direction of the arrows, we can see how uti-

lization changed after the fare cut. We can see across both periods, cities with

fare reductions almost always have increases in utilization. In contrast, cities

without fare reductions, in the top panel, both increases and decreases are

common (and are all fairly small). Among those cities that have fare reduc-

tions, we can see that cities with the largest fare reductions tend to have long

22Our intuition is that estimates would be weighted averages of each city’s probability of
being selected for a fare cut of that magnitude, though we have not explored this rigorously.
At the binary treatment case, things are more straightforward. Consider two periods where
the treatment is turned on for some units in the second period, and yit = αi + Witτ(αi),
where τ(αi) captures the notion that treatment effects depend on the city-specific effect. If
Pr(W = 1|αi) is the probability of treatment, then E[∆y] = E[τ(αi)Pr(W = 1|αi)].
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Figure 6: By-week city demeaned utilization rates around the two January
fare cuts

(a) By-week city demeaned utilization rates around the two January far cut periods
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Notes: In the left column in the top panel shows the actual demeaned utilization around
the January fare cut week, with the solid red line indicating non-cut cities (the control) and
the blue dashed line showing the treatment. Data are from the 2015 and 2016 January fare
cuts, in the top and bottom rows, respectively. The bottom panel shows the January fare
cut magnitude versus the utilization three weeks before the fare change (base of the arrow)
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without a fare change are shown in the top panel.

43



arrows i.e., experience the largest increases in utilization.

Uber was clearly conditioning on utilization in determining the magnitude

of cuts (and said as much publicly). But there is still clearly residual variation.

The most parsimonious explanation for price variation in the data is that Uber

was simply learning to price through experimentation. The company claimed

as much when announcing fare cuts: “[w]e’ve learned over the years that we do

best when we test new things. With each new test—small or large—we learn

more about the choices riders make, and how those choices impact earnings

for drivers.”23

B.2 Parallel trends, with evidence from the January

cuts

In our setting, where the treatment unit is whole markets, the main identifi-

cation concerns mirror the concerns of the minimum wage literature. In the

empirical minimum wage literature, an ever-present concern is that states that

raise the minimum wage are experiencing rising economic fortunes, creating a

spurious correlation between minimum wage levels and employment. In our

empirical context, perhaps cities with already-increasing utilization were se-

lected for fare cuts. In minimum wage studies, the typical empirical approach

is to include unit-specific time-trends, but also to use a distributed lag model

and then look for evidence of pre-trends (Allegretto et al., 2011). We can do

both, and as we will show, there is no evidence of pre-trends for any of our

outcomes.

A more graphical approach for assessing parallel trends is to simply plot

city-specific means for the outcome around an “event.” In our setting we do

not have a single treatment event—price variation is spread out over the entire

panel. We can—and do—plot cumulative effects from a distributed lag model,

but we can also use the large January cuts to explore, graphically, the parallel

trends assumption in a model-free way. Despite many cities receiving fare

23https://web.archive.org/web/20181224143345/https://www.uber.com/newsroom/beating-
the-winter-slump-price-cuts-for-riders-and-guaranteed-earnings-for-drivers/
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cuts, which we call “treated,” there are numerous cities that did not have fare

changes, leaving some cities to serve as a control.

In Figure 6a, we plot the by-week utilization rates for all our cities, de-

meaned to 0 on the day of the cut, for both of the January periods. The two

“rows” of the figure show data for the January 2015 and 2016 cuts in the top

and bottom rows, respectively.

In the leftmost column, the actual by-week values are plotted for each city,

by whether the city received a cut and is in the treatment (dashed) or did

not and is in the control (solid). The averages for these two groups are also

plotted in a heavy line. In the column labeled “Actual” we can see for both

sets of cuts, (1) no evidence that, on average, treated and untreated cities were

on different trajectories before the cut and (2) clear evidence of an increase in

utilization for treated cities after the fare cut. This evidence of a treatment

effect is consistent with what we observed in Figure 1 in our quasi-event study.

An obvious objection to this approach—despite no evidence of a violation

in parallel trends—is that perhaps the cities that have cuts are selected, most

likely on the basis of impending negative demand shocks due to weather (e.g.,

conditioning on ǫit). However, if we examine cities in Figure 2a that experi-

enced January fare reductions, there is little evidence that cuts are universally

weather-related. For example, in the first week of January 2015, we see no fare

reductions in New York City, Boston, and Pittsburgh—not locations known

for balmy winters—but large reductions in, among others, Tucson, Dallas,

Houston, and Orange County. If we move forward one year to January 2016,

New York City and Pittsburgh do get a fare cut and Boston does not; Dallas

does not get a cut, but Houston and Orange County do get cuts.

Going beyond a qualitative assessment of how likely impending weather

explains “treatment assignment,” we can also explore the paths of cities that

differed in their assignment across the two January fare cuts, allowing for a

kind of placebo test. The idea is that if changes in utilization were caused

purely by selection related to weather, we should find spurious effects even

when a city was not treated.

In the middle column of Figure 6a, the sample consists of only those cities
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that were in the control in the focal year i.e., did not receive a cut. As before,

the top rows show data from the January 2015 cuts and the bottom row shows

the January 2016 cuts. In this column, the dashed line is the average for

cities that were treated or will be treated in the other January fare cut. If

those cities “naturally” were going to have a rise in utilization, we should see

the dashed line rise as in the “Actual” column. In 2015, we see some slight

evidence of an increase in utilization for the pseudo-treated in the post-period,

but it is negligible and far less than observed in “Actual.” In 2016, there are

no pseudo-treated cities.

In the right column, the sample is only those that were treated (i.e., had

a cut) in the focal January, with the solid line being the average for those

cities that were in the control in the other January period. Again, we see no

evidence of a “treatment effect” in either January period. There still could be

some change that Uber could foresee unrelated to weather that caused or did

not cause a fare change and that was related to future utilization, but there is

no evidence that weather was a culprit.

There are other potential factors Uber could have been conditioning on.

In the subsequent sections, we consider the potential role played by weather,

competitors, and local economic conditions. In each case, we compare the

point estimates to the baseline estimates from the main body. For convenience,

the effects on the components of the driver gross hourly earnings rate are

reported in Table 1.

B.3 Controlling for city-specific weather by season

If Uber was lowering fares in some cities expected to have a demand reduction

due to weather, it would create a correlation between the base fare and demand

(and hence many of our market-level outcomes).

One approach to dealing with this concern is to include city-specific calendar-

month fixed effects. E.g., there would be a fixed effect for New York City and

January, which would be 1 for the New York City weeks during January 2014,

January 2016, and January 2017. These fixed effects are intended to pick up
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Table 1: Effects of fare changes on market outcomes from a city-week panel of
UberX markets

Dependent variable:

log hourly earnings rate log utilization log surge

(1) (2) (3)

Log base fare index 0.075 −0.715∗∗∗ −0.208∗∗∗

(0.064) (0.067) (0.035)

City FE Y Y Y
City-specific linear trend Y Y Y
Week FE Y Y Y
Observations 4,954 4,954 4,954
R2 0.794 0.842 0.472
Adjusted R2 0.785 0.835 0.448

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2. The base fare index is the price to
passengers of an un-surged, 6-mile, 16-minute trip in that city, in that week. The
sample for each regression is the same, and is a city-week panel of UberX markets.
See §3 for a description of the sample. The hourly earnings rate is the total earnings
by drivers (excluding costs and Uber’s commission but not including any promotional
payments) divided by total hours-worked, for drivers in that city, that week. Utilization
is the total hours spent transporting passengers by drivers divided by the total number
of hours-worked. Surge is the average value of the multiplier for all trips conducted
in that city, during that week. Standard errors are clustered at the level of the city.
Significance indicators: p ≤ 0.10 : †, p ≤ 0.05 : ∗, p ≤ 0.01 : ∗∗ and p ≤ .001 : ∗ ∗ ∗.
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city-specific differences in demand or supply due to different weather patterns.

Table 2 reports regressions for our main outcomes using city-calendar

month fixed effects. All of the point estimates are very close to the original

point estimates from Table 1. This casts doubt on the notion that Uber was

conditioning on the weather when deciding prices in a manner that simply led

to a spurious correlation and the failure of the strict exogeneity assumption.

Table 2: Effects of fare changes on market outcomes from a city-week panel of
UberX markets

Dependent variable:

log hourly earnings rate log utilization log surge

(1) (2) (3)

Log base fare index 0.071 −0.715∗∗∗ −0.214∗∗∗

(0.068) (0.067) (0.036)

City FE Y Y Y
City-specific linear trend Y Y Y
City-Calendar Month FE Y Y Y
Week FE Y Y Y
Observations 4,954 4,954 4,954
R2 0.801 0.850 0.492
Adjusted R2 0.791 0.842 0.466

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2, but with the inclusion of calendar-month
and city interactions.. The base fare index is the price to passengers of an un-surged,
6-mile, 16-minute trip in that city, in that week. The sample for each regression is
the same, and is a city-week panel of UberX markets. See §3 for a description of
the sample. The hourly earnings rate is the total earnings by drivers (excluding costs
and Uber’s commission but not including any promotional payments) divided by total
hours-worked, for drivers in that city, that week. Utilization is the total hours spent
transporting passengers by drivers divided by the total number of hours-worked. Surge
is the average value of the multiplier for all trips conducted in that city, during that
week. Standard errors are clustered at the level of the city. Significance indicators:
p ≤ 0.10 : †, p ≤ 0.05 : ∗, p ≤ 0.01 : ∗∗ and p ≤ .001 : ∗ ∗ ∗.
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B.4 Effects of ride-sharing competitors on main results

Another potential threat to identification is the actions of competitors. It is

beyond the scope of this analysis to try to model the competition between

ride-sharing platforms and the larger for-hire industry, or the broader trans-

portation market. However, we can at least assess whether our panel results

are sensitive to the presence of a substantial ride-sharing competitor. To do

this, we interact our base price index with Uber’s share of the ride-sharing

category.

Our estimates of Uber’s share come from the market research company

“Second Measure,” which in turn uses credit card data. The reported measures

are from each July, from 2014 to 2017. From these measures, we impute

weekly measures matching our panel with a linear model. For cities in which

no competitor was operating that week, we impute Uber’s share as 1.

In Table 3 we report our long-run regressions, mirroring our analysis in

Table 1, though we leave out a price-specific trend to reduce variance in ex-

change for some (small) amount of bias. However, we first use the imputed

Uber share as an outcome variable in Column (1). The coefficient is positive,

large in magnitude but insignificant.

In the next columns, we report estimates for the hourly earnings rate,

utilization and average surge. The base trip price index is interacted with the

imputed Uber share of ride-sharing in that city that week. For all outcomes,

the level of Uber’s category share has no detectable effect on the point estimate.

The results suggest that the degree of direct rivalry in the market had no

discernible effect on how Uber’s marketplace adjusted following fare changes.

Despite the possibility that direct competitors would matter, we have no ev-

idence this is the case—interacting Uber’s imputed at-the-moment ride-sharing

share with the price index has no detectable effect on the point estimates. This

may simply reflect the fact that during the period covered by our analysis, Uber

was the sole ride-sharing platform in many cities and held a dominant position

in others, with Uber’s share of ride-sharing in the US being around 85% as
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Table 3: Effects of fare changes on market outcomes from a city-week panel of
UberX markets

Dependent variable:

Log hourly earnings rate log utilization log surge

(1) (2) (3)

Log base fare index −0.119 −0.892∗∗∗ −0.224∗∗∗

(0.102) (0.104) (0.029)
Uber share 0.017 0.010 0.003

(0.014) (0.011) (0.002)
Uber share × Log base fare index −0.005 −0.002 −0.001

(0.005) (0.004) (0.001)

City FE Y Y Y
Week FE Y Y Y
Observations 4,954 4,954 4,954
R2 0.735 0.774 0.440
Adjusted R2 0.725 0.765 0.419

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2, but with the base price interacted with
Uber’s imputed market share. The base fare index is the price to passengers of an un-
surged, 6-mile, 16-minute trip in that city, in that week. The sample for each regression
is the same, and is a city-week panel of UberX markets. See §3 for a description of
the sample. The hourly earnings rate is the total earnings by drivers (excluding costs
and Uber’s commission but not including any promotional payments) divided by total
hours-worked, for drivers in that city, that week. Utilization is the total hours spent
transporting passengers by drivers divided by the total number of hours-worked. Surge
is the average value of the multiplier for all trips conducted in that city, during that
week. Standard errors are clustered at the level of the city. Significance indicators:
p ≤ 0.10 : †, p ≤ 0.05 : ∗, p ≤ 0.01 : ∗∗ and p ≤ .001 : ∗ ∗ ∗.
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late as January 2016.24

B.5 Controlling for the city-specific unemployment rate

We might also be concerned that perhaps other economic shocks would matter,

such as the local unemployment rate. Again, when we control for the city-

specific monthly employment rate by MSA, we get no important change in our

point estimates. In Table 4 we include each city’s MSA monthly unemployment

rate as a regressor. All of the point estimates are very close to the original

point estimates from Table 1. This casts doubt on the notion that Uber was

conditioning on the weather when deciding prices in a manner that simply led

to a spurious correlation and the failure of the strict exogeneity assumption.

B.6 Static estimates with “short T” sub-panels

A concern with our empirical specification is that a single fixed effect and

city-specific linear time trend is not sufficient to meet the strict exogeneity

assumption. For example, cities with lower-than-expected utilization, given

the fixed effect and linear trend, might be targeted for fare changes. One

approach to explore this hypothesis is to divide the sample into shorter-T

periods, but still include city-specific fixed effects. With this approach, it is

more likely that strict exogeneity is met in each of the sub-panels.

We do this in Figure 7, reporting estimates for two smaller periods, [0, T/2]

and (T/2, T ]. With these shorter panels, the city-specific linear time trend

becomes harder to estimate and so we eliminate it. However, we keep the

city-specific time trend for the full panel analysis, labeled “Full.”

Related to the concern about effect heterogeneity, there is a growing empir-

ical interest in what can be identified by dynamic panel data models (Abraham

and Sun, 2018; Athey and Imbens, 2018; Goodman-Bacon, 2018). A common

thread in this literature is that problems arise when treatment effects vary

24https://web.archive.org/web/20181231153043/https://www.thestreet.com/markets/ipos/do-
uber-recent-numbers-support-its-ipo-valuation–14783564
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Table 4: Effects of fare changes on market outcomes from a city-week panel of
UberX markets, controlling for MSA monthly unemployment rate

Dependent variable:

log hourly earnings rate log utilization log surge

(1) (2) (3)

Log base fare index 0.086 −0.697∗∗∗ −0.209∗∗∗

(0.068) (0.069) (0.036)
Unemployment rate 0.001 −0.003 0.004

(0.014) (0.016) (0.007)

City FE Y Y Y
City-specific linear trend Y Y Y
Week FE Y Y Y
Observations 4,816 4,816 4,816
R2 0.787 0.841 0.475
Adjusted R2 0.777 0.834 0.451

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2 but also includes as a regressor the
MSA-level unemployment rate. The base fare index is the price to passengers of an un-
surged, 6-mile, 16-minute trip in that city, in that week. The sample for each regression
is the same, and is a city-week panel of UberX markets. See §3 for a description of
the sample. The hourly earnings rate is the total earnings by drivers (excluding costs
and Uber’s commission but not including any promotional payments) divided by total
hours-worked, for drivers in that city, that week. Utilization is the total hours spent
transporting passengers by drivers divided by the total number of hours-worked. Surge
is the average value of the multiplier for all trips conducted in that city, during that
week. Fixed effects are included for the city and for the week. Standard errors are
clustered at the level of the city. Significance indicators: p ≤ 0.10 : †, p ≤ 0.05 : ∗,
p ≤ 0.01 : ∗∗ and p ≤ .001 : ∗ ∗ ∗.
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Figure 7: Point estimates for the effects of base fare changes with different
panel lengths

Full panel

 estimate

Avg. Surge Hourly earnings Utilization

[0,68] (68,137] Full [0,68] (68,137] Full [0,68] (68,137] Full

−0.8

−0.4

0.0

Panel sub−periods (weeks)

Elasticity wrt
 to base fare

Notes: This figure reports estimates similar to Table 1, but with the panel cut in half on the
time dimension and the city-specific linear time trend removed. For comparison purposes,
the point estimates from Table 1, which includes the time trend are shown. These estimates
are labeled “Full” and are indicated with a horizontal blue dashed line.

by time and across units, creating estimates that are weighted averages of

different effects.

For simplicity, this work typically considers a binary treatment that occurs

at some point in an experimental unit and then stays “on” for the remainder

of the panel, such as state-wide policy change. Our empirical setting is more

complex, in that the independent variable–the base fare—is continuous and

changes multiple times over the course of the panel. Despite our setting being

different, we can at least assess some of the flavor of the concern about weighted

combinations of effects by estimating effects using different sub-panels and

seeing how the point estimates differ.
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B.7 Testing the strict exogeneity assumption

One statistical test of the strict exogeneity assumption is to include a “lead”

of our explanatory variable in our regression (Wooldridge, 2010),

yit = αi + β1 log bit + γ log bit+1 + git+ dt + ǫit. (7)

Under the null hypothesis of strict exogeneity, γ = 0. When we run this

regression, using utilization as the outcome, γ̂ is -0.087, with an SE of 0.065,

giving a t-stat of -1.336 and a p-value of 0.182.

B.8 Heterogeneous effects by direction of fare change

As we saw in Figure 2a, our identifying variation includes both price increases

and decreases. We might suspect that fare increases and fare decreases have

different effects on a ride-sharing market. For example, price decreases are

more likely to be heavily promoted by Uber than price increases, perhaps

hastening their effects. On the driver side, to the extent we analogize the

hourly earnings rate to a wage paid by a firm, there are good reasons to think

fare decreases might elicit a different behavioral reaction (Bewley, 2009).

Despite reasons to suspect heterogeneous effects, there are counter-arguments.

Kinked demand curves are typically hard to justify theoretically and perhaps

even less so in our empirical context—it is not the case that passengers had

years of constant prices around which to form reference points. Base fare

changes are not uncommon in our data, as our short-run price changes due to

surge.

Empirically, given the structure of our data, it is hard to use fare increases

and decreases separately, at least over the entire panel. However, we can

compare the effects of January cuts—which are, of course, only cuts—to the

overall panel estimates. There is also a period in 2015 when nearly all the

variation in prices was price increases.

We use these sub-panels with variation of all the same type and estimate

our baseline panel model. Figure 8 reports estimates of Equation 2. Point
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estimates are shown for our main outcomes of interest. For the sub-samples,

we remove the city-specific linear time trend.

The samples are: (1) the full panel estimate, (2) windows around the

January 2015 cuts (from 2014-12-08 to 2015-03-09), (3) windows around the

January 2016 cuts (from 2015-12-07 to 2016-03-07), and (4) the “interior” of

2015 when all of the variation in prices were price increases. For (2) and (3),

post-periods of different lengths are used, with the number of weeks of post-cut

data included indicated above the error bars. For (4), we use from 2015-03-02

to 2015-06-29.

For the two January cuts, we use different post-period lengths. These

lengths are shown above the top of the confidence interval, in weeks. They are

in length order and a line connects them.

With these shorter panels, there is a clear loss of precision. However, we

can see that all point estimate effects are directionally the same as those found

in the full panel. We know there are dynamics to many of these outcomes,

and so it is unsurprising that point estimates change with longer panels.

B.9 Alternative regression specifications

In the main body of the paper, we reported our preferred specifications for

the various city outcomes. However, there was some freedom in this choice

with respect to (1) whether city-specific linear time trends were included, (2)

whether the pre-period cumulative effect was constrained to be zero and (3)

the number of post-period lags to include. In this section, we report estimates

of our effects using different choices.

Figure 9 illustrates the pattern we use for all outcomes-. In the left column,

the cumulative effects from Equation 3 are plotted. These just recapitulate

the results from the main body of the paper. In the middle column, we report

the same distributed lag model (DLM) results but remove the city-specific

linear trends. In the right column, we report the same DLM, but without the

city trend and without demeaning in the −1 period i.e., we do not impose the

restriction that
∑0

τ=NumPre
β̂τ = 0. In Figure 10, we report cumulative effects
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Figure 8: Effects of a base fare increase on the driver hourly earnings rate and
its components using different samples
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Notes: This figure reports estimates of Equation 2 using different sample definitions. The
samples are: (1) the full panel estimate, (2) windows around the January 2015 cuts, (3)
windows around the January 2016 cuts, and (4) the “interior” of 2015 when all of the
variation in prices were price increases. For (2) and (3), post-periods of different lengths are
used, with the number of weeks of post-cut data included indicated above the error bars.
For (4), we use from 2015-03-02 to 2015-06-29.

with our preferred specification, but for a collection of post-period bandwidths.

We present these same alternative specification/alternative bandwidth plots

for all of our other main outcomes in the figures below.
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Figure 9: Alternative specifications for Figure 5
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Figure 10: Alternative post-period bandwidths for Figure 5
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C Tables

Table 5: Effects of fare changes on Dynamic Pricing/Surge outcomes from a
city-week panel of UberX markets

Dependent variable:

Log avg. surge ...

Log base fare index −0.208∗∗∗

(0.035)

City FE Y
City-specific linear trend Y
Week FE Y
Observations 4,954

R2 0.472

Adjusted R2 0.448

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2. Standard errors are clustered at the
level of the city. Significance indicators: p ≤ 0.10 : †, p ≤ 0.05 : ∗, p ≤ 0.01 : ∗∗ and
p ≤ .001 : ∗ ∗ ∗.

Table 6: Effects of fare changes on Passenger-side Quantities outcomes from
a city-week panel of UberX markets

Dependent variable:

Log total trips... Log requested t... Log total hours...

(1) (2) (3)

Log base fare index −0.099 −0.156∗ −0.236∗∗∗

(0.081) (0.082) (0.074)

City FE Y Y Y
City-specific linear trend Y Y Y
Week FE Y Y Y
Observations 4,954 4,954 4,954

R2 0.989 0.988 0.990

Adjusted R2 0.989 0.988 0.989

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2. Standard errors are clustered at the
level of the city. Significance indicators: p ≤ 0.10 : †, p ≤ 0.05 : ∗, p ≤ 0.01 : ∗∗ and
p ≤ .001 : ∗ ∗ ∗.
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Table 7: Effects of fare changes on Wait times outcomes from a city-week panel
of UberX markets

Dependent variable:

Log median esti... Log median actu...

(1) (2)

Log base fare index −0.625∗∗∗ −0.585∗∗∗

(0.067) (0.064)

City FE Y Y
City-specific linear trend Y Y
Week FE Y Y
Observations 4,954 4,954

R2 0.854 0.889

Adjusted R2 0.848 0.884

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2. Standard errors are clustered at the
level of the city. Significance indicators: p ≤ 0.10 : †, p ≤ 0.05 : ∗, p ≤ 0.01 : ∗∗ and
p ≤ .001 : ∗ ∗ ∗.

Table 8: Effects of fare changes on Driver-side Quantities outcomes from a
city-week panel of UberX markets

Dependent variable:

Log hours-worke... Log total num. ... Log total hours... Log partner sig...

(1) (2) (3) (4)

Log base fare index 0.342∗∗∗ 0.137∗∗ 0.479∗∗∗ −0.122
(0.034) (0.063) (0.064) (0.163)

City FE Y Y Y Y
City-specific linear trend Y Y Y Y
Week FE Y Y Y Y
Observations 4,954 4,954 4,954 4,954

R2 0.913 0.993 0.992 0.953

Adjusted R2 0.909 0.993 0.991 0.951

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2. Standard errors are clustered at the
level of the city. Significance indicators: p ≤ 0.10 : †, p ≤ 0.05 : ∗, p ≤ 0.01 : ∗∗ and
p ≤ .001 : ∗ ∗ ∗.

Table 9: Effects of fare changes on Driver Productivity/Utilization outcomes
from a city-week panel of UberX markets

Dependent variable:

Log num. trips ... Log avg. utiliz... Log avg. miles ...

(1) (2) (3)

Log base fare index −0.292∗∗∗ −0.715∗∗∗ −0.655∗∗∗

(0.068) (0.067) (0.059)

City FE Y Y Y
City-specific linear trend Y Y Y
Week FE Y Y Y
Observations 4,954 4,954 4,954

R2 0.860 0.842 0.919

Adjusted R2 0.853 0.835 0.915

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2. Standard errors are clustered at the
level of the city. Significance indicators: p ≤ 0.10 : †, p ≤ 0.05 : ∗, p ≤ 0.01 : ∗∗ and
p ≤ .001 : ∗ ∗ ∗.

60



Table 10: Effects of fare changes on Driver Compensation outcomes from a
city-week panel of UberX markets

Dependent variable:

Frac. earnings ... Log gross hourl... Log hourly earn... Log gross hourl...

(1) (2) (3) (4)

Log base fare index −0.123∗∗∗ 0.075 0.055 0.086
(0.029) (0.064) (0.069) (0.208)

City FE Y Y Y Y
City-specific linear trend Y Y Y Y
Week FE Y Y Y Y
Observations 4,954 4,954 4,954 4,927

R2 0.605 0.794 0.774 0.747

Adjusted R2 0.588 0.785 0.764 0.735

Notes: This table reports OLS regressions of city-week outcomes on the log base fare
index. The estimating equation is Equation 2. Standard errors are clustered at the
level of the city. Significance indicators: p ≤ 0.10 : †, p ≤ 0.05 : ∗, p ≤ 0.01 : ∗∗ and
p ≤ .001 : ∗ ∗ ∗.
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