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Heads in 
the Cloud

One way to think about crowd com-
puting is as the human analogue to 
cloud computing. Where the cloud pro-
vides access to elastic, highly available 
computation, and storage resources in 
the network, the crowd represents ac-
cess to elastic, highly-available human 
resources, such as human perception 
and intelligence. Crowd computing of-
fers the strength of software with the 
intelligence and common sense of hu-
man beings. 

Human Computation
One variant of crowd computing is hu-
man computation, which we define as 
using software to orchestrate a process 
of small contributions from a crowd to 
solve a problem that can’t be solved by 
software alone. 

Human computation was first pop-
ularized by Games With a Purpose 
(http://gwap.com), in which the com-
putation is a side effect of a fun game 
[8]. For example, the ESP Game asks 
two players to guess words associated 
with an image, scoring points when 
their words agree, which makes the 

game fun, but also generating useful 
labels to index the image for search-
ing, which makes it an act of human 
computation.

Another human computation site 
is Amazon Mechanical Turk (http://
mturk.com), a marketplace where 
people get paid to perform human 
computation. Users, or “workers,” 
find short tasks that are posted by 
“requesters” (the people who need the 
tasks completed) and get paid small 
amounts of money for completing 
them. CrowdFlower (http://crowdflow-
er.com) is another site that pays users 
for computation—in not only real cur-
rency, but also virtual currencies for 
games like Farmville and Mafia Wars. 
Social networks like Facebook are 
also becoming platforms for human 
computation, motivated by social 
relationships rather than entertain-
ment or monetary reward. 

These platforms make it increasing-
ly feasible to build and deploy systems 
that use human intelligence as an inte-
gral component. But there are at least 
three challenges to exploring the space 

of human computation systems: 1) ap-
plications—understanding what’s ap-
propriate for human computation and 
what isn’t; 2) programming—learning 
how to write software that uses human 
computation; and 3) systems—learn-
ing how to get good performance out 
of a system with humans in the loop.

Applications
What application areas will benefit 
the most from human computation? 
What properties do certain problems 
possess that make them amenable to a 
successful solution by a hybrid human-
software system? Since the end user of 
such a system is also, typically, human, 
we can refine this question further: 
Why does a human end user need to 
request the help of a human crowd to 
accomplish a goal, rather than just do-
ing it herself? 

One reason is differences in ca-
pability. A group of many people has 
abilities and knowledge that one sin-
gle end user does not, either innately 
or because of situational constraints. 
For example, VizWiz [1] helps blind us-
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ers answer questions they have about 
things around them that they cannot 
see. The blind person takes a photo-
graph with a smartphone’s camera, 
records a spoken question (also using 
the phone), and then uploads the query 
and picture to a crowd of sighted users 
on the net who are better able to answer 
it (see Figure 1). For example, if a blind 
person grabs a can out of her cupboard 
but has forgotten what’s inside it, she 
can snap a photo of the can and its la-
bel, upload it, and ask the sighted users 
what’s in the can.

A related system, Sinch [7], draws on 
the crowd to provide assistance to web-
enabled mobile device users who have 
situational disabilities, such as the 
limited ability to read a small screen, 
arthritis or hand tremors that make it 
difficult to click on small web page tar-
gets, and slow networks. With Sinch, 
the mobile users speak a question into 
their phone and the crowd searches 
the web for answers, using their more 
capable desktop web access, and re-
turning web pages with the requested 
information highlighted. 

Another reason to use a crowd is 
the “many eyes” principle, which has 
been claimed as an advantage of open-
source software development (the 
complete phrase is “many eyes make 
bugs shallow”). We have exploited this 
principle in Soylent [2], a Microsoft 
Word extension that uses a crowd for 
proofreading, shortening, and repeti-
tive editing. A typical run of Soylent 
may have dozens of people looking at 
each paragraph of a document, finding 
errors that a single writer might miss. 
In fact, a conference paper submitted 
about Soylent contained a grammati-
cal error that was overlooked by not 
only Word’s built-in grammar checker, 
but also eight authors and six review-
ers. However, when we passed the pa-
per through Soylent, the crowd caught 
the error.

A corollary of the many eyes prin-
ciple is diversity. The fact is, a crowd 
comprises a wide range of ideas, opin-
ions, and skills. For example in Soylent, 
the system not only indentifies writing 
errors, but also suggests multiple ways 
to fix them. It can suggest text to cut 
to save space—a tough task even for 
skilled authors, who are often reluc-
tant to make cuts. Soylent can typi-

cally trim text down to 85 percent of its 
original length, without changing the 
meaning of the text or introducing er-
rors (see Figure 2).

Programming
Prototyping a human computation sys-
tem is hard if you have to entice a crowd 
to visit your website. Games With a Pur-
pose handles this by making the expe-
rience fun—but not all human com-
putation systems are fun enough to 
be self-motivating, particularly at the 
prototyping stage. Mechanical Turk is 
a good prototyping platform for many 
forms of human computation, because 
it offers a ready service for recruiting a 
crowd on demand. And the first proto-
types for VizWiz and Soylent were built 
on Mechanical Turk. 

Yet thinking about programming 

with human beings inside the system 
poses special problems. For example 
with Mechanical Turk, a request for 
a human to do a small task can take 
a few minutes and cost a few cents to 
get a result, which is astounding in one 
sense (that you can obtain human as-
sistance so quickly and so cheaply), but 
is abysmally slow and expensive com-
pared to a conventional function call. 

Programmers need new tools that 
can help them experiment with human 
computation in their systems. For ex-
ample, our TurKit toolkit [3] integrates 
Mechanical Turk calls in a traditional 
imperative/object-oriented program-
ming paradigm, so that programmers 
can write algorithms that incorporate 
human computation in a familiar way. 
TurKit does this using a novel pro-
gramming model called “crash and 
rerun,” which is suited to long-running 
distributed processes where local com-
putation (done by software) is cheap, 
and remote work (done by humans) is 
costly. 

The insight of crash-and-rerun pro-
gramming is that if our program crash-
es, it is cheap to rerun the entire pro-
gram up to the place where it crashed. 
This is true as long as rerunning does 
not re-perform all the costly external 
operations from the previous run. The 
latter problem is solved by recording 
information in a database every time a 
costly operation is executed. 

Costly operations are marked by a 

“A group of many 
people has abilities 
and knowledge that 
one single end-user 
does not... The fact 
is, a crowd comprises 
a wide range of 
ideas, opinions, and 
skills.”

What color is this pillow? What denomination is
this bill?

Do you see picnic tables
across the parking lot?

What temperature is my
oven set to?

Can you please tell me
what this can is?

What kind of drink does
this can hold?

(89s) I can’t tell.
(105s) multiple shades
of soft green, blue and
gold

(24s) 20
(29s) 20

(13s) no
(46s) no

(69s) it looks like 425
degrees but the image
is difficult to see.
(84s) 400
(122s) 450

(183s) chickpeas.
(514s) beans
(552s) Goya Beans

(91s) Energy
(99s) no can in the
picture
(247s) energy drink

Figure 1: With VizWiz, blind people take photos using their mobile phones and 
submit them alongside a question, spoken orally into the phone, shown here above 
each image. A crowd of anonymous users reply, shown below, with response time 
given in seconds in parentheses.
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new primitive called “once,” meaning 
they should only be executed once over 
all reruns of a program. Subsequent 
runs of the program check the database 
before performing operations marked 
with “once” to see if they have already 
been executed. This model makes it 
much easier to code algorithms involv-
ing human computation. For example, 
a TurKit program can sort a list of im-
ages using human preference judg-
ments by calling the human computa-
tion in the sort algorithm’s comparison 
function, and wrapping those calls in 
“once” to make them persistent. 

Another programming challenge 
is the development of algorithms and 

design patterns that handle the idio-
syncrasies of human beings. Humans 
are not programmable machines, and 
they don’t always follow instructions, 
unintentionally or otherwise. Some-
times this should be embraced and 
supported, to harness the creativity 
and diversity of the crowd. Other times, 
it simply produces noisy, erroneous, or 
useless results. 

For example, we have studied alter-
native algorithms for content creation 
[4]. Iterative processes are similar to 
Wikipedia or open-source software 
development. People build on existing 
content created by others, with vot-
ing or independent review ensuring 

that the process stays on track. Paral-
lel processes are often seen in design 
contests, like Threadless.com, where 
people generate content independent-
ly, and then the best is chosen through 
a vote. See Figure 3.

In experiments involving various 
kinds of work, such as handwriting 
transcription, image description, and 
brainstorming, our results show that 
iterative processes generally produce 
higher than average quality than par-
allel processes. However, in the case 
of brainstorming, workers riff on good 
ideas that they see to create more good 
ones, but the very best ideas seem to 
come from people working alone. And 

Figure 2: In Soylent, after the crowd has suggested words or phrases that can be edited, the end-user can shorten his or her 
text interactively with a slider. Red text indicates locations where cuts or rewrites have occurred.

Figure 3: Some human computation processes are iterative (left), involving a succession of interleaved improvement steps 
(by one person) and voting steps (by several people). Other processes are parallel (right), in which individuals generate  
original content, and voters simply choose among the alternatives.
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with transcription tasks, it turns out 
that showing workers the guesses of 
other workers often leads them astray, 
especially if the guesses are self-con-
sistent but wrong.

Crowd workers exhibit high vari-
ance in the amount of effort they invest 
in a task. Some are lazy turkers, who do 
as little work as necessary to get paid, 
while others are eager beavers, who go 
above and beyond the requirements, 
either to be helpful or to signal that 
they aren’t lazy turkers, but in counter-
productive ways. We need new design 
patterns for algorithms involving hu-
man computation that recognize and 
control this behavior. 

For example, Soylent uses a find-fix-
verify pattern to improve the quality 
of proofreading and document short-
ening (Figure 4). In this pattern, some 
workers find problems, other workers 
fix them, and still other workers verify 
the fixes. But questions remain. What 

other algorithms and design patterns 
are useful? How should algorithms in-
volving human computation be evalu-
ated and compared from a theoretical 
point of view?

Systems Problems
Moving from prototyping to actual 
deployment requires facing questions 
about how to obtain a reliable and well-
performing source of human computa-
tion for the system. How can we recruit 
a crowd to help, and motivate it to con-
tinue to help over time, while optimiz-
ing for cost, latency, bandwidth, qual-
ity, churn, and other parameters? 

For paid crowds, these questions in-
tersect with labor economics. Some of 
our recent work has found that workers 
in human computation markets like 
Mechanical Turk behave in unusual 
ways. For example, instead of seeking 
work that provides a target wage, they 
often seek a target earning amount, 

and simply work until they reach their 
target, consistent with game-playing 
behavior [5]. 

Another difference in these mar-
kets is the overwhelming importance 
of searchability. Workers’ ability to 
find tasks they want to do is strongly 
affected by the kind of interface the 
market offers. Mechanical Turk, for 
example, typically displays a list of 
thousands of available tasks, divided 
into hundreds of result pages, with 
few effective tools for searching or 
filtering this list. We have found that 
most workers simply choose a par-
ticular sort order and work their way 
through the list. They most often sort 
by newest task, or most tasks avail-
able, and surprisingly not by price. 
The speed of completion of a task is 
strongly affected by its ability to be 
found, which may not be strongly 
related to the monetary reward it of-
fers [6]. 

We can also think about human 
computation in computer systems 
terms, such as cost, latency, and 
parallelism. Services like VizWiz 
and Sinch need to return answers 
quickly, and to support that, we have 
developed an approach (and accom-
panying implementation) called 
quikTurkit that provides a layer of 
abstraction on top of Mechanical 
Turk to intelligently recruit multiple 
workers before they’re needed. 

In a field deployment of VizWiz, 
users had to wait a little longer than 
two minutes on average to get their first 
answer. Wait times decreased sharply 
when questions and photos were easy 
for workers to understand. Answers 
were returned at an average cost per 
question of only $0.07 for 3.3 answers. 
Given that other visual-assistance tools 
for the blind can cost upwards of $1,000 
(the equivalent of nearly 15,000 uses of 
VizWiz), we believe that human com-
putation embedded in an inexpensive 
software system can be not only more 
effective but also competitive with, or 
even cheaper than, existing pure soft-
ware solutions. When set to maintain a 
steady pool of workers (at a cost of less 
than $5 per hour), quikTurkit can ob-
tain answers in less than 30 seconds.

Beyond monetary compensation, 
many other reasons entice people to 
participate in human computation, in-

Figure 4: The find-fix-verify algorithm in Soylent identifies patches in need of  
editing, suggests fixes to the patches, and votes on those fixes.

Heads in the Cloud
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cluding altruism, entertainment, and 
friendship. How do those motivations 
influence system performance? And 
how should the systems be designed to 
encourage some motivations, and per-
haps discourage others? 

After demonstrating that VizWiz 
was feasible using paid strangers on 
Mechanical Turk, we also ported it 
to Facebook, so that a blind user’s 
sighted friends can help. We are cur-
rently studying how people (at least in 
this context) choose to trade off the 
strengths and weaknesses of each ser-
vice. Mechanical Turk is fast but costs 
money. Facebook is free, and the user’s 
friends might be more motivated to 
answer, or even more capable since 
they know more about the person. On 
the other hand, the user might be less 
willing to ask certain personal ques-
tions to his or her friends, rather than 
asking an anonymous Mechanical 
Turk crowd.

People vs Systems
The gap between what software can do 
and what people can do is shrinking, 
but a gap of some sort will exist for a 
long time. Automatic techniques need 
to be able to fallback to people when 
necessary to fill in the gaps, enabling 
interactions that automatic techniques 
alone can’t yet support and helping us 
design for the future.

So-called Wizard of Oz prototyping 
(wherein a human is hiding behind 
the curtain, so to speak) is a venerable 
technique in human-computer inter-
action and artificial intelligence that 
makes an intelligent system (or even a 
not-so-intelligent one) appear to work 
even though a software backend isn’t 
ready yet. With platforms like Mechan-
ical Turk and Facebook that make hu-
man computation practical, we are 
now at the point where Wizard of Oz is 
not just for prototyping anymore. We 
can build useful systems with human 
power inside, and actually deploy them 
to real users. These systems will stretch 
the limits of what software can do, and 
allow us to find out whether the ideas 
even work and how people would use 
them. 

In addition, we can collect data from 
actual system use, like VizWiz queries 
and photos, that might eventually help 
to replace some or all of the human 

power with artificial intelligence. From 
this perspective, AI would speed up 
performance and reduce labor costs. 
But human computation made the sys-
tem possible in the first place.
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ACRONYMS

AMT   Amazon Mechanical 
Turk: a web service owned 
by Amazon that facilitates 
crowdsourcing

CAPTCHA   complete 
automated public Turing 
test to tell computers and 
humans apart; it’s a contrived 
acronym intentionally redolent 
of the word “capture,” used 
to describe a test issued on 
web forms to protect against 
automated responses

GWAP   Game with a Purpose: 
a computer game that layers a 
recreational challenge on top 
of a problem that demands 
human intelligence for 
efficient solution, e.g., protein 
folding

HCIR   human–computer 
information retrieval

HIT   human intelligence 
task: a task that an AMT 
requester is willing to pay to 
have accomplished by AMT 
providers. More generally, 
a task that may be best 
completed via crowdsourcing

HuGS   human-guided 
search: A research project 
investigating a strategy for 
search and optimization 
problems that incorporates 
human intuition and insight

reCAPTCHA   a kind of 
“CAPTCHA” (see above) 
service that helps to digitize 
books, newspapers and old 
radio shows. Used to detect 
whether a user is a human or a 
computer (bot)

TF-IDF   term frequency-
inverse document frequency: 
A weight formula used in 
data mining to determine the 
importance of a particular 
term to a document in a 
corpus of text
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