
XRDS • W i n t e r 2 0 1 0 • V o l . 17 • N o . 2 27

Heads in
the Cloud

One way to think about crowd com-
puting is as the human analogue to
cloud computing. Where the cloud pro-
vides access to elastic, highly available
computation, and storage resources in
the network, the crowd represents ac-
cess to elastic, highly-available human
resources, such as human perception
and intelligence. Crowd computing of-
fers the strength of software with the
intelligence and common sense of hu-
man beings.

Human Computation
One variant of crowd computing is hu-
man computation, which we define as
using software to orchestrate a process
of small contributions from a crowd to
solve a problem that can’t be solved by
software alone.

Human computation was first pop-
ularized by Games With a Purpose
(http://gwap.com), in which the com-
putation is a side effect of a fun game
[8]. For example, the ESP Game asks
two players to guess words associated
with an image, scoring points when
their words agree, which makes the

game fun, but also generating useful
labels to index the image for search-
ing, which makes it an act of human
computation.

Another human computation site
is Amazon Mechanical Turk (http://
mturk.com), a marketplace where
people get paid to perform human
computation. Users, or “workers,”
find short tasks that are posted by
“requesters” (the people who need the
tasks completed) and get paid small
amounts of money for completing
them. CrowdFlower (http://crowdflow-
er.com) is another site that pays users
for computation—in not only real cur-
rency, but also virtual currencies for
games like Farmville and Mafia Wars.
Social networks like Facebook are
also becoming platforms for human
computation, motivated by social
relationships rather than entertain-
ment or monetary reward.

These platforms make it increasing-
ly feasible to build and deploy systems
that use human intelligence as an inte-
gral component. But there are at least
three challenges to exploring the space

of human computation systems: 1) ap-
plications—understanding what’s ap-
propriate for human computation and
what isn’t; 2) programming—learning
how to write software that uses human
computation; and 3) systems—learn-
ing how to get good performance out
of a system with humans in the loop.

Applications
What application areas will benefit
the most from human computation?
What properties do certain problems
possess that make them amenable to a
successful solution by a hybrid human-
software system? Since the end user of
such a system is also, typically, human,
we can refine this question further:
Why does a human end user need to
request the help of a human crowd to
accomplish a goal, rather than just do-
ing it herself?

One reason is differences in ca-
pability. A group of many people has
abilities and knowledge that one sin-
gle end user does not, either innately
or because of situational constraints.
For example, VizWiz [1] helps blind us-

C rowd computing is quickly becoming an essential part of the technology landscape.
Crowd computing encompasses the interaction among large numbers of people
facilitated by software systems and networking technology. Crowds—and by “crowds,”
we literally mean a mass of people—are themselves the power that fuels sites like

Wikipedia, Twitter, Intrade, and even online labor markets like Amazon Mechanical Turk.

A professor and several PhD students at MIT examine the challenges
and opportunities in human computation.
By Robert C. Miller, Greg Little, Michael Bernstein, Jeffrey P. Bigham,
Lydia B. Chilton, Max Goldman, John J. Horton, and Rajeev Nayak
DOI: 10.1145/1869086.1869095

XRDS • W i n t e r 2 0 1 0 • V o l . 17 • N o . 228

Heads in the Cloud

ers answer questions they have about
things around them that they cannot
see. The blind person takes a photo-
graph with a smartphone’s camera,
records a spoken question (also using
the phone), and then uploads the query
and picture to a crowd of sighted users
on the net who are better able to answer
it (see Figure 1). For example, if a blind
person grabs a can out of her cupboard
but has forgotten what’s inside it, she
can snap a photo of the can and its la-
bel, upload it, and ask the sighted users
what’s in the can.

A related system, Sinch [7], draws on
the crowd to provide assistance to web-
enabled mobile device users who have
situational disabilities, such as the
limited ability to read a small screen,
arthritis or hand tremors that make it
difficult to click on small web page tar-
gets, and slow networks. With Sinch,
the mobile users speak a question into
their phone and the crowd searches
the web for answers, using their more
capable desktop web access, and re-
turning web pages with the requested
information highlighted.

Another reason to use a crowd is
the “many eyes” principle, which has
been claimed as an advantage of open-
source software development (the
complete phrase is “many eyes make
bugs shallow”). We have exploited this
principle in Soylent [2], a Microsoft
Word extension that uses a crowd for
proofreading, shortening, and repeti-
tive editing. A typical run of Soylent
may have dozens of people looking at
each paragraph of a document, finding
errors that a single writer might miss.
In fact, a conference paper submitted
about Soylent contained a grammati-
cal error that was overlooked by not
only Word’s built-in grammar checker,
but also eight authors and six review-
ers. However, when we passed the pa-
per through Soylent, the crowd caught
the error.

A corollary of the many eyes prin-
ciple is diversity. The fact is, a crowd
comprises a wide range of ideas, opin-
ions, and skills. For example in Soylent,
the system not only indentifies writing
errors, but also suggests multiple ways
to fix them. It can suggest text to cut
to save space—a tough task even for
skilled authors, who are often reluc-
tant to make cuts. Soylent can typi-

cally trim text down to 85 percent of its
original length, without changing the
meaning of the text or introducing er-
rors (see Figure 2).

Programming
Prototyping a human computation sys-
tem is hard if you have to entice a crowd
to visit your website. Games With a Pur-
pose handles this by making the expe-
rience fun—but not all human com-
putation systems are fun enough to
be self-motivating, particularly at the
prototyping stage. Mechanical Turk is
a good prototyping platform for many
forms of human computation, because
it offers a ready service for recruiting a
crowd on demand. And the first proto-
types for VizWiz and Soylent were built
on Mechanical Turk.

Yet thinking about programming

with human beings inside the system
poses special problems. For example
with Mechanical Turk, a request for
a human to do a small task can take
a few minutes and cost a few cents to
get a result, which is astounding in one
sense (that you can obtain human as-
sistance so quickly and so cheaply), but
is abysmally slow and expensive com-
pared to a conventional function call.

Programmers need new tools that
can help them experiment with human
computation in their systems. For ex-
ample, our TurKit toolkit [3] integrates
Mechanical Turk calls in a traditional
imperative/object-oriented program-
ming paradigm, so that programmers
can write algorithms that incorporate
human computation in a familiar way.
TurKit does this using a novel pro-
gramming model called “crash and
rerun,” which is suited to long-running
distributed processes where local com-
putation (done by software) is cheap,
and remote work (done by humans) is
costly.

The insight of crash-and-rerun pro-
gramming is that if our program crash-
es, it is cheap to rerun the entire pro-
gram up to the place where it crashed.
This is true as long as rerunning does
not re-perform all the costly external
operations from the previous run. The
latter problem is solved by recording
information in a database every time a
costly operation is executed.

Costly operations are marked by a

“A group of many
people has abilities
and knowledge that
one single end-user
does not... The fact
is, a crowd comprises
a wide range of
ideas, opinions, and
skills.”

What color is this pillow? What denomination is
this bill?

Do you see picnic tables
across the parking lot?

What temperature is my
oven set to?

Can you please tell me
what this can is?

What kind of drink does
this can hold?

(89s) I can’t tell.
(105s) multiple shades
of soft green, blue and
gold

(24s) 20
(29s) 20

(13s) no
(46s) no

(69s) it looks like 425
degrees but the image
is difficult to see.
(84s) 400
(122s) 450

(183s) chickpeas.
(514s) beans
(552s) Goya Beans

(91s) Energy
(99s) no can in the
picture
(247s) energy drink

Figure 1: With VizWiz, blind people take photos using their mobile phones and
submit them alongside a question, spoken orally into the phone, shown here above
each image. A crowd of anonymous users reply, shown below, with response time
given in seconds in parentheses.

XRDS • W i n t e r 2 0 1 0 • V o l . 17 • N o . 2 29

new primitive called “once,” meaning
they should only be executed once over
all reruns of a program. Subsequent
runs of the program check the database
before performing operations marked
with “once” to see if they have already
been executed. This model makes it
much easier to code algorithms involv-
ing human computation. For example,
a TurKit program can sort a list of im-
ages using human preference judg-
ments by calling the human computa-
tion in the sort algorithm’s comparison
function, and wrapping those calls in
“once” to make them persistent.

Another programming challenge
is the development of algorithms and

design patterns that handle the idio-
syncrasies of human beings. Humans
are not programmable machines, and
they don’t always follow instructions,
unintentionally or otherwise. Some-
times this should be embraced and
supported, to harness the creativity
and diversity of the crowd. Other times,
it simply produces noisy, erroneous, or
useless results.

For example, we have studied alter-
native algorithms for content creation
[4]. Iterative processes are similar to
Wikipedia or open-source software
development. People build on existing
content created by others, with vot-
ing or independent review ensuring

that the process stays on track. Paral-
lel processes are often seen in design
contests, like Threadless.com, where
people generate content independent-
ly, and then the best is chosen through
a vote. See Figure 3.

In experiments involving various
kinds of work, such as handwriting
transcription, image description, and
brainstorming, our results show that
iterative processes generally produce
higher than average quality than par-
allel processes. However, in the case
of brainstorming, workers riff on good
ideas that they see to create more good
ones, but the very best ideas seem to
come from people working alone. And

Figure 2: In Soylent, after the crowd has suggested words or phrases that can be edited, the end-user can shorten his or her
text interactively with a slider. Red text indicates locations where cuts or rewrites have occurred.

Figure 3: Some human computation processes are iterative (left), involving a succession of interleaved improvement steps
(by one person) and voting steps (by several people). Other processes are parallel (right), in which individuals generate
original content, and voters simply choose among the alternatives.

XRDS • W i n t e r 2 0 1 0 • V o l . 17 • N o . 230

with transcription tasks, it turns out
that showing workers the guesses of
other workers often leads them astray,
especially if the guesses are self-con-
sistent but wrong.

Crowd workers exhibit high vari-
ance in the amount of effort they invest
in a task. Some are lazy turkers, who do
as little work as necessary to get paid,
while others are eager beavers, who go
above and beyond the requirements,
either to be helpful or to signal that
they aren’t lazy turkers, but in counter-
productive ways. We need new design
patterns for algorithms involving hu-
man computation that recognize and
control this behavior.

For example, Soylent uses a find-fix-
verify pattern to improve the quality
of proofreading and document short-
ening (Figure 4). In this pattern, some
workers find problems, other workers
fix them, and still other workers verify
the fixes. But questions remain. What

other algorithms and design patterns
are useful? How should algorithms in-
volving human computation be evalu-
ated and compared from a theoretical
point of view?

Systems Problems
Moving from prototyping to actual
deployment requires facing questions
about how to obtain a reliable and well-
performing source of human computa-
tion for the system. How can we recruit
a crowd to help, and motivate it to con-
tinue to help over time, while optimiz-
ing for cost, latency, bandwidth, qual-
ity, churn, and other parameters?

For paid crowds, these questions in-
tersect with labor economics. Some of
our recent work has found that workers
in human computation markets like
Mechanical Turk behave in unusual
ways. For example, instead of seeking
work that provides a target wage, they
often seek a target earning amount,

and simply work until they reach their
target, consistent with game-playing
behavior [5].

Another difference in these mar-
kets is the overwhelming importance
of searchability. Workers’ ability to
find tasks they want to do is strongly
affected by the kind of interface the
market offers. Mechanical Turk, for
example, typically displays a list of
thousands of available tasks, divided
into hundreds of result pages, with
few effective tools for searching or
filtering this list. We have found that
most workers simply choose a par-
ticular sort order and work their way
through the list. They most often sort
by newest task, or most tasks avail-
able, and surprisingly not by price.
The speed of completion of a task is
strongly affected by its ability to be
found, which may not be strongly
related to the monetary reward it of-
fers [6].

We can also think about human
computation in computer systems
terms, such as cost, latency, and
parallelism. Services like VizWiz
and Sinch need to return answers
quickly, and to support that, we have
developed an approach (and accom-
panying implementation) called
quikTurkit that provides a layer of
abstraction on top of Mechanical
Turk to intelligently recruit multiple
workers before they’re needed.

In a field deployment of VizWiz,
users had to wait a little longer than
two minutes on average to get their first
answer. Wait times decreased sharply
when questions and photos were easy
for workers to understand. Answers
were returned at an average cost per
question of only $0.07 for 3.3 answers.
Given that other visual-assistance tools
for the blind can cost upwards of $1,000
(the equivalent of nearly 15,000 uses of
VizWiz), we believe that human com-
putation embedded in an inexpensive
software system can be not only more
effective but also competitive with, or
even cheaper than, existing pure soft-
ware solutions. When set to maintain a
steady pool of workers (at a cost of less
than $5 per hour), quikTurkit can ob-
tain answers in less than 30 seconds.

Beyond monetary compensation,
many other reasons entice people to
participate in human computation, in-

Figure 4: The find-fix-verify algorithm in Soylent identifies patches in need of
editing, suggests fixes to the patches, and votes on those fixes.

Heads in the Cloud

XRDS • W i n t e r 2 0 1 0 • V o l . 17 • N o . 2

cluding altruism, entertainment, and
friendship. How do those motivations
influence system performance? And
how should the systems be designed to
encourage some motivations, and per-
haps discourage others?

After demonstrating that VizWiz
was feasible using paid strangers on
Mechanical Turk, we also ported it
to Facebook, so that a blind user’s
sighted friends can help. We are cur-
rently studying how people (at least in
this context) choose to trade off the
strengths and weaknesses of each ser-
vice. Mechanical Turk is fast but costs
money. Facebook is free, and the user’s
friends might be more motivated to
answer, or even more capable since
they know more about the person. On
the other hand, the user might be less
willing to ask certain personal ques-
tions to his or her friends, rather than
asking an anonymous Mechanical
Turk crowd.

People vs Systems
The gap between what software can do
and what people can do is shrinking,
but a gap of some sort will exist for a
long time. Automatic techniques need
to be able to fallback to people when
necessary to fill in the gaps, enabling
interactions that automatic techniques
alone can’t yet support and helping us
design for the future.

So-called Wizard of Oz prototyping
(wherein a human is hiding behind
the curtain, so to speak) is a venerable
technique in human-computer inter-
action and artificial intelligence that
makes an intelligent system (or even a
not-so-intelligent one) appear to work
even though a software backend isn’t
ready yet. With platforms like Mechan-
ical Turk and Facebook that make hu-
man computation practical, we are
now at the point where Wizard of Oz is
not just for prototyping anymore. We
can build useful systems with human
power inside, and actually deploy them
to real users. These systems will stretch
the limits of what software can do, and
allow us to find out whether the ideas
even work and how people would use
them.

In addition, we can collect data from
actual system use, like VizWiz queries
and photos, that might eventually help
to replace some or all of the human

power with artificial intelligence. From
this perspective, AI would speed up
performance and reduce labor costs.
But human computation made the sys-
tem possible in the first place.

Acknowledgements

Ideas and work in this article come from many students
and collaborators, including Mark Ackerman, David Crowell,
Bjoern Hartmann, David Karger, Marc Grimson, and Katrina
Panovich. This work was supported in part by Quanta
Computer, NSF, and Xerox.

Biographies

Robert C. Miller is an associate professor of computer
science at Massachusetts Institute of Technology. He grew
up in rural Louisiana and plays the accordion, although
extremely poorly.

Danny “Greg” Little is a PhD student in computer science at
MIT. He is probably asleep right now.

Michael Bernstein is a PhD student in computer science at
MIT and a features editor for this magazine.

Jeffrey P. Bigham is an assistant professor of computer
science at University of Rochester, and he wants to be
mayor of your living room. Don’t let him in.

Lydia B. Chilton is a PhD student in computer science
at University of Washington. When not studying human
computation, she is a consultant to the United Federation
of Planets and makes the occasional journey on the USS
Enterprise with her old pals Kirk, Spock, and McCoy.

Max Goldman is a PhD student in computer science at
MIT. When he gives a talk, his performance is so lively and
engaging that it distracts the audience from the actual
research results, but everybody goes away happy.

John J. Horton is a PhD student in public policy at Harvard
University. He is having trouble thinking of a public policy
angle for his human computation research and needs to
defend his dissertation soon. This is a growing problem
that, to date, Turkers have been unable to solve.

Rajeev Nayak is a graduate student in computer science
at MIT. He bats .400, shoots .575 from the field, sings a
cappella, and watches Glee religiously.

References

1.	 Bigham, J.P., Jayant, C., Ji, H., Little, G., Miller, A.,
Miller, R.C., Miller, R., Whyte, B., White, S., Yeh, T.
VizWiz: Nearly Real-time Answers to Visual Questions.
UIST 2010.

2.	 Bernstein, M., Little, G., Miller, R.C., Hartmann, B.,
Ackerman, M.S., Karger, D.R., Crowell, D., Panovich, K.
Soylent: A Word Processor with a Crowd Inside. UIST
2010.

3.	 Little, G., Chilton, L., Goldman, M., Miller, R.C. TurKit:
Human Computation Algorithms on Mechanical Turk.
UIST 2010.

4.	 Little, G., Chilton, L., Goldman, M., Miller, R.C. Exploring
Iterative and Parallel Human Computation Processes.
HCOMP 2010, to appear.

5.	 Horton, J.J. and Chilton, L. The Labor Economics of
Paid Crowdsourcing. EC 2010.

6.	 Chilton, L., Horton, J.J., Miller, R.C., Azenkot, S. Task
Search in a Human Computation Market. HCOMP
2010, to appear.

7.	 Nayak, R., et al. Sinch: Searching Intelligently on a
Mobile Device. CHI 2011, in submission.

8.	 von Ahn, L., and Dabbish, L. Designing Games with a
Purpose. CACM, 51, 8, August 2008.

ACRONYMS

AMT Amazon Mechanical
Turk: a web service owned
by Amazon that facilitates
crowdsourcing

CAPTCHA complete
automated public Turing
test to tell computers and
humans apart; it’s a contrived
acronym intentionally redolent
of the word “capture,” used
to describe a test issued on
web forms to protect against
automated responses

GWAP Game with a Purpose:
a computer game that layers a
recreational challenge on top
of a problem that demands
human intelligence for
efficient solution, e.g., protein
folding

HCIR human–computer
information retrieval

HIT human intelligence
task: a task that an AMT
requester is willing to pay to
have accomplished by AMT
providers. More generally,
a task that may be best
completed via crowdsourcing

HuGS human-guided
search: A research project
investigating a strategy for
search and optimization
problems that incorporates
human intuition and insight

reCAPTCHA a kind of
“CAPTCHA” (see above)
service that helps to digitize
books, newspapers and old
radio shows. Used to detect
whether a user is a human or a
computer (bot)

TF-IDF term frequency-
inverse document frequency:
A weight formula used in
data mining to determine the
importance of a particular
term to a document in a
corpus of text

31

© 2010 ACM 1528-4972/10/1200 $10.00

